Subjects
A prospective, observational study was performed at the tertiary gastroenterology department, from Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK. Parents of children aged 4 weeks–16 years without non-allergic co-morbidities (i.e. cerebral palsy, cardiac disorders) who were required to follow an elimination diet for the diagnosis of suspected non-IgE mediated gastrointestinal food allergies, were approached to take part in the study. Inclusion in the study occurred if after 4 weeks of following the elimination diet, there was an improvement in their gastrointestinal symptoms. This was measured by a repeated likert scale gastro-intestinal symptom questionnaire that has previously been published [12].
Anthropometry
Pre-elimination weight and height measurements were taken from the referral letters, clinical notes and health records, as parents only came in once during the study for assessment, which was after the elimination diet was shown to lead to symptom improvement. At the research appointment, a minimum of 4 weeks after the elimination diet was commenced, weight and height measurements were repeated.
Weight was measured using a SECA (Hamburg, Germany) portable electronic baby (<10 kg), or SECA (Hamburg, Germany) sitting (>10 kg) scales, calibrated as per hospital protocol. Length was measured using a portable recumbent length meter in children under 2 years of age, and a fixed standing height meter in older children (rounded off to the nearest 0.1 decimal). All growth measurements were converted to z-scores using the WHO Anthro (birth—5 years) and AnthroPlus Software (>5–18 years). We assessed the z-scores for Wtage, Htage and WtHt and for children ≤5 years of age and for children >5 years, body mass index (BMI) replaced WtHt in the AnthroPlus Software. We compared the z-scores before and after the elimination diet, where available and assessed the number of children that were stunted (Htage ≤2 z-scores), wasted (WtHt less than or equal to −2 z-score) or overweight (>2 z-score) as defined by the World Health Organisation (WHO) after a minimum of 4 week dietary elimination period [13].
Dietary intake analysis
The parents of all children in this study received dietetic advice with standard diet sheets published by the Food Allergy Specialist Group of the British Dietetic Association at the time of having to embark on the elimination diet. This advice included not only how to avoid allergenic foods, but also individualised information on a suitable hypoallergenic formula (HF)/over the counter milk and supplementation if required as per dietetic assessment. A 3-day estimated food diary (2 week days and 1 weekend day) was recorded a minimum of 4 weeks after initiating the elimination diet. Carers were given detailed instructions on how to complete the diary as accurately as possible, including a portion size guide and a sample menu. HF consumption (including type and volume) and over-the-counter milk alternatives for older children were also documented. Food diaries were discussed with parents and any unclear entries were clarified by the researcher if possible, either at the time of research appointment or by means of telephone communication.
Nutritional intake data was assessed using Dietplan 6 (Forestfield Software Limited, UK). Any foods, in particular specialist foods free from allergens, as well as HF not available on the software database were manually added by the researcher, and product information was obtained from the manufacturer where necessary.
Dietary intake for energy and protein were compared to the UK Dietary Reference Values using the reference nutrient intake (RNI) for protein and estimated average requirements (EARs) for energy [14]. Insufficient intake for protein was defined as an intake <100 % of the lower reference nutrient intake (LRNI—meeting nutrient requirements for 2.5 % of population), sufficient intake was between the LRNI and <200 % of the RNI and excessive intake >200 % of the RNI [14].
For energy intake, the RNI is not used because it represents an excess energy intake for the majority of the population, as highlighted by the Scientific Advisory Committee on Nutrition in the United Kingdom (SACN) [14]. Instead the EAR were used and children consuming below 67 % were classified as low energy intake, between 67 % EAR and 110 % as sufficient intake and excessive intake in this study was arbitrary based on 110 % of the EAR [15].
Statistical analysis
Statistical analysis was performed using IBM SPSS Statistics for Windows, version 22 (Armonk, NY, USA). Continuous variables are presented as means with standard deviations or medians with interquartile ranges where appropriate. Categorical variables are presented as frequencies Bonferroni correction was used in univariable analysis. Paired-samples t test was used to compare growth parameters before and after elimination diet and Mann–Whitney U Test was used to compare z-scores between groups of children achieving/not achieving energy intake requirements. Spearman’s test was used to check correlation between percentage energy intake from fat, carbohydrates and proteins, and z-scores. Multivariable regression analysis was used to ascertain the association between anthropometrical parameters and the following parameters: macronutrients (i.e. protein, carbohydrate and fat) and vitamin and/or mineral supplementation, consumption of HF and over-the-counter milk alternatives (i.e. oat, rice, coconut or nut milks), food elimination (i.e. CM, egg, wheat, soya) and number of foods eliminated, time between pre- and post-intervention and gastrointestinal symptoms (i.e. diarrhoea, vomiting, feeding difficulties). We accounted for age and gender in the regression model and factors were only included in the regression analysis based on the outcome of univariate analysis. All tests were two-tailed and significance level was set to 0.05.