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Innate lymphocyte cells in asthma phenotypes
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Abstract

T helper type 2 (TH2) cells were previously thought to be the main initiating effector cell type in asthma; however,
exaggerated TH2 cell activities alone were insufficient to explain all aspects of asthma. Asthma is a heterogeneous
syndrome comprising different phenotypes that are characterized by their different clinical features, treatment
responses, and inflammation patterns. The most-studied subgroups of asthma include TH2-associated early-onset
allergic asthma, late-onset persistent eosinophilic asthma, virus-induced asthma, obesity-related asthma, and
neutrophilic asthma. The recent discovery of human innate lymphoid cells capable of rapidly producing large
amounts of cytokines upon activation and the mouse data pointing to an essential role for these cells in asthma
models have emphasized the important role of the innate immune system in asthma and have provided a new
means of better understanding asthma mechanisms and differentiating its phenotypes.

Keywords: Asthma, Innate immunity, Airways, Phenotype, Cytokines
Introduction
The immune system is classically divided into two
categories, innate and adaptive immunity, according to
the speed and the duration of the response, and they
collaborate with each other to target different agents and
perform effector functions. Through recent advances in
understanding the different subsets of immune system ef-
fector cells, Annunziato et al. have recently suggested a
new classification [1]. They proposed that the innate and
adaptive immune systems could also be generally classified
into three major kinds of cell-mediated effector immunity:
categorized as type 1, comprising T-bet+ IFN-γ–producing
helper cells, type 2, composed of GATA-3+ lymphocytes
producing interleukin-4 (IL-4), IL-5, and IL-13, and type
3, characterized by RORγt+ lymphocytes that produce
IL-17 alone or in combination with IL-22 as signature
cytokines [1].
Innate immunity is known to respond quickly and

without antigen specificity to signals derived from the
environment or from other immune cells. Innate lymph-
oid cells (ILCs) are the newest described elements of the
innate immune system and have received much attention
over the last few years [2]. Early in the immune response,
ILCs possess a lymphoid morphology, similar to adaptive
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B and T cells, and produce many different T helper (TH)
cell cytokines but lack the recombination-activating gene
(RAG)-mediated antigen specific receptors; therefore,
these cells are not antigen-specific. Because ILCs are very
similar to the other effector cell phenotypes, it was
proposed that ILCs could be classified in a similar
manner to that of TH cells. Type 1 immunity includes
the IFN-γ-producing group 1 ILCs (ILC1s) that cope
with intracellular pathogens through activation of
mononuclear phagocytes. Group 2 ILCs (ILC2s), which
secrete IL-4, IL-5, IL-9, and IL-13, are an example of
Type 2 immunity. This type of immunity induces mast
cell, basophil, and eosinophil activation leading to an
increase in serum IgE levels and, therefore, fosters the
eradication of helminthes and venoms. Group 3 ILCs
(ILC3s), which are an example of type 3 immunity,
produce IL-17 and/or IL-22, activate mononuclear
phagocytes, recruit neutrophils, and induce epithelial
antimicrobial responses, all of which help protect
against extracellular fungal and bacterial infections [1].
This group includes lymphoid tissue inducer (LTi) cells
that promote the formation of lymph nodes [3].
In general, ILCs constitute a distinct element of the in-

nate immune system, providing an initial host response
via specific cytokines after sensing external stimuli on
the frontline. The initial priming of immune responses
to pathogenic challenges is executed by ILCs with the
capacity to rapidly secrete effector cytokines. All ILCs
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are developmentally related, and they all require the
expression of the transcriptional repressor inhibitor of
DNA binding 2 (Id2) and the common IL-2 cytokine
receptor (γc) chain. Moreover, they all possess the IL-7
receptor α-chain (CD-127) [4].
The ILC lineage incorporates the classic cytotoxic nat-

ural killer (NK) cells and the non-cytotoxic ILC family
[5]. Natural killer cells are also capable of responding to
invading pathogens and exterior threats without the
need for prior sensitization, and they function in the ab-
sence of RAG-recombined antigen receptor recognition.
Beside their ability to release a variety of cytokines, they
also have the capacity to kill other cells. NK cells were
initially categorized into ILC1s, but recently it has been
shown that these cells are different from non-cytotoxic
ILCs because they undergo different developmental
pathways [6, 7].
Non-cytotoxic ILCs have the capacity to rapidly respond

to the environment by producing various cytokines, and
their goal is to maintain homeostasis with tissue repair
and remodeling. They are involved in lymphoid organ
development and in resistance to pathogenic and non-
pathogenic microorganisms. Non-cytotoxic ILCs also
interact with mast cells, natural killer T (NKT) cells,
eosinophils, epithelial cells, and macrophages, and they
may configure the optimal milieu for setting up an
adaptive response [8, 5].
Asthma includes complex innate and adaptive immune

responses to environmental factors. For decades, re-
searchers investigating the immune responses in asthma
have focused on adaptive immunity, mostly on memory
responses to antigens. Therefore, asthma was previously
considered to be the airway manifestation of a TH2-driven
response from adaptive immunity toward some specific
triggers [9]. Today, advances in molecular technology and
recent immunology studies have allowed us to understand
much more about the impact of the innate immune sys-
tem on the development of asthma and on its evolution.
Negative results from the initial monoclonal treatment
drug studies and cluster analysis have demonstrated
that “asthma syndrome” covers distinct subgroups of a
reversible obstructive lung disease with different clin-
ical properties termed different “phenotypes” [10–12].
Although there is no consensus on a single phenotype
classification for asthma, the most-studied subgroups
include: TH2-associated with early-onset allergic asthma,
late-onset persistent eosinophilic asthma, virus-induced
asthma, obesity-related asthma, and neutrophilic asthma.
All of these subgroups can be distinguished from each
other by clinical factors, such as the patient age at dis-
ease onset and the involvement of particular biological
pathways.
Understanding new innate pathways will allow for

more accurate asthma phenotyping and, subsequently,
will help direct us to personalized care for our asthmatic
patients. In this review, we provide an updated view on
the emerging roles of non-cytotoxic ILCs in different
asthma phenotypes.

Review
ILC1s and its possible role in asthma phenotypes
ILC1s, formerly known as conventional NK cells, are
present in mucosal tissues, express the IL-7 receptor,
and rapidly secrete IFN-γ upon stimulation with IL-12
and IL-18, which are produced by macrophages and
other cells. ILC1s are involved in the antiviral response
and have been shown to expand in the intestines of
patients with Crohn’s disease [13]. Although we now
know that NK cells are developmentally different from
ILC1s and that ILC1s lack cytotoxicity, these two cell
types share some common properties [14]. Therefore, it
is postulated that, like NK cells in a mouse model [15]
and in human asthmatics [16], ILC1s might also have a
role in the development of eosinophilic airway inflam-
mation, which can be seen in most asthma phenotypes
and even in the microbiota–immune interactions of
asthma [17]. Intraepithelial ILC1s, another subset of
ILC1s, have been found in human tonsillar tissue [18].
Unlike typical ILC1s, these cells are not stimulated with
IL-12 and IL-18, but rather with IL-15.

ILC2s and early onset allergic asthma
For many years, early onset allergic asthma has been
considered to be an adaptive immune response that de-
velops after the prior sensitization phase to allergens.
Airway epithelial cells are the frontline cells initially
exposed to inhaled substances, and they actively col-
laborate with other immune cells, specifically pulmon-
ary dendritic cells (DC) followed by M2 macrophages,
to mount a TH2 response through the production of
epithelial cell-derived cytokines, such as IL-33, IL-25
and thymic stromal lymphopoietin (TSLP) [8].
After recent studies questioning the requirement for

antigen-specific adaptive TH cells in allergic asthma, the
existence of a new class of the innate type-2 lymphocyte
group, the ILC2s, has been described. ILC2s were first
observed in the gut, emphasizing their physiological role
against helminth infection [19–21]. Later, their presence
was confirmed in various other tissues, including in the
human lung [22]. ILC2s are also present in human per-
ipheral blood, and their percentage is greater in asthma
patients than it is in allergic rhinitis patients or in
healthy controls [23, 24].
Following contact with certain microbial products,

helminth infection, physical injury, or allergens in the
airway, epithelial cells secrete TSLP, IL-25, and IL-33
[25, 26, 23, 19]. Afterwards the recruitment and activation
of innate type 2 cells can initiate the immune response
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independently of adaptive immunity [27–29]. Lung ILC2s
are an important source of IL-5, a growth and differenti-
ation factor for eosinophils, and of IL-13, which can
directly cause airway hyperreactivity (AHR). Cytokine
production is followed by a progressive accumulation of
eosinophils and mucus secretion. IL-13 is also crucial
for the differentiation of TH2 cells from naive CD4+ T
cells (Fig. 1) [22, 21, 20, 30]. Mouse studies have demon-
strated a role for ILC2s in OVA-, HDM-, papain
protease-, and Alternaria alternata-induced airway in-
flammation [31, 29, 32, 22, 33, 34]. Some of these obser-
vations are from RAG-deficient animals, which are
adaptive immunity-deficient mice. Although evidence
supporting this in human asthma has not been found
yet, we speculate that the activation of ILC2s in the ab-
sence of T cells and B cells is enough to induce asthma-
like symptoms, and that ILC2s may play a role in early
onset allergic asthma.
A papain-induced asthma model showed that even in

the presence of T cells, ILC2s were the major source of
type 2 cytokines [22]. Another mouse model with
papain-induced airway inflammation revealed that lung
Fig. 1 Function and regulation of group 2 lymphoid cells in different asthm
asthma and late onset asthma with polyposis are regulated by several elem
(TSLP), interleukin 25 (IL-25) and IL-33; arachidonic acid metabolites, like pro
IL-9 that also regulates their activation. ILC2s release IL-4, IL-5 and IL-13; the
secrete arginase 1. ILC2s can stimulate naive T cells (TH0) by IL-4, costimula
TH2 polarization. In the virus induced asthma phenotype, lungs ILC2s constitu
and type 2-cytokine secretion. The damage is potentialized by IL-33 and the r
ILCs also produce IL-9, depending on the amount of IL-2
from the adaptive immune system, and IL-33 [35]. More-
over, a recent study showed that ILC2s in the lungs se-
crete arginase-1, a key enzyme in the pathophysiology of
acute and chronic allergic asthma (Fig. 1) [36–38].
Being at the side that first contacts the environment,

as well as the first source of type 2 cytokines, it is likely
that ILC2s have a role in preparing a type 2 milieu for
setting up the adaptive immune response [8]. Further-
more, major histocompatibility complex II (MHCII) is
expressed on ILC2s, which provides them with the cap-
acity for antigen presentation [39, 20]. ILC2s can promote
the effector functions of CD4+ T cells via costimulatory
molecules OX40L and IL-4 and by a contact-dependent
mechanism favoring TH2 polarization [40, 41]. Mutually-
activated ILC2s also need IL-2, possibly derived from T
cells, for activation and survival [21, 20].

ILC2s and late onset asthma with nasal polyposis
Asthma onset after 12 years of age and the presence of
blood eosinophilia are two important parameters for
differentiating the immunologically and pathologically
a phenotypes. Innate lymphoid cells group 2 (ILC2s) of early onset
ents such as the epithelial cell derived thymic stromal lymphopoietin
staglandin D2 (PGD2) and leukotriene D4 (LTD4). Lung ILC2s produces
n increase the airway hyperreactivity and eosinophilia. Lung ILC2s also
tory molecules OX40L and a contact-dependent mechanism favoring
te a balance between tissue repair and tissue damage via amphiregulin
epairing capacity is enhanced by maresins. Eos, eosinophil
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distinct asthma phenotype known as late onset asthma
with nasal polyposis [42]. This phenotype is frequently
associated with nasal polyposis and sometimes with
aspirin-sensitivity [11]. Nevertheless, allergy skin test re-
sults are often positive in asthma patients with this
phenotype, and even though these patients may rarely
feel that their allergy symptoms were triggered by the
allergens for which they tested positive [42].
Mjösberg et al. first identified ILC2s in nasal polyps of

patients with rhinosinusitis (CRSwNP) [23]. Several
studies have reported an increased percentage of ILC2s
in the sinus mucosa of these patients compared with
that in chronic rhinosinusitis patients without nasal polyps
[43–45]. IL-25, IL-33, and eotaxin-3 levels, released from
the sinus mucosa epithelium were also increased in
CRSwNP [46]. Additionally, these patients had upregu-
lated IL-5 and IL-13 mRNA levels [43]. The stimulation of
ILC2s from human nasal polyps with TSLP has been
shown to result in IL-4 release (Fig. 1) [47]. Another re-
port found that ILC2s frequencies were associated with
tissue and blood eosinophilia [45]. Additional studies fo-
cusing on the effects of ILC2s frequency on asthma con-
trol, the severity of this phenotype, and the association
with the presence of aspirin sensitivity are needed.

ILC2s in virus-associated asthma and AHR
Viruses can pave the way for the development of asthma
in susceptible individuals. After 2 years of age, viruses
can be the trigger for a distinct phenotype of asthma
known as “virus-induced asthma”. Moreover, viruses fre-
quently provoke asthma exacerbations [48–51].
In an experimental mouse model, researchers have

shown that influenza A virus can rapidly induce AHR by
inducing the activation of ILCs independently of the
adaptive immune system [52]. During influenza virus in-
fection, IL-33 is released from alveolar macrophages and
NKT cells, which induces ILC2 activation and the subse-
quent production of type 2 cytokines, IL-13 and IL-5
[52, 53]. The presence of IL-5 enables the growth and
the later persistence of eosinophils, even after viral clear-
ance. IL-5 and IL-13 are mainly responsible for the clinical
symptoms of AHR. Consequently, ILC2s can promote in-
flammation, but they also have an opposing role during
virus-induced AHR- specifically the repair of wounded
lung tissue after virus infection. This effect is attained
through amphiregulin, an epidermal growth factor-like
growth factor (Fig. 1) [4]. The balance between the dam-
age and repair of airways constitutes the homeostatic
function of ILC2s.

Regulation of ILC2s function during asthma
Recent work on ILC2s has provided new insights into
TH2-mediated asthma phenotypes, but additional ques-
tions remain. Future studies are needed to determine
how this newly found source of type 2 cytokines could
be regulated and how this knowledge will ameliorate our
treatment options.

Role of TSLP, IL-25, and IL-33 in regulating ILC2s
Human ILC2s can be stimulated by TSLP, IL-25, and IL-33
[23, 44, 22]. Intranasal administration of IL-25 or IL-33 in-
duces an increase in cytokine-releasing ILC2s in the lungs,
bronchoalveolar lavage fluid, and mediastinal lymph nodes
[31, 29, 54, 55].

� IL-25 has an essential role in allergic airway
inflammation and also in remodeling [56].
Neutralizing antibodies against IL-25 may prevent
airway hyperresponsiveness in allergic asthma [57].

� IL-33 can also activate mast cells and basophils
through IgE receptors, and is a survival factor for
eosinophils [58, 59]. Its effect on ILC2s is even faster
and stronger than that of IL-25 [60]. These properties
make IL-33 a possible target for future therapies. Like
neutralizing antibodies to IL-25, neutralizing anti-
bodies to IL-33 or to IL-33 receptor (ST2) has been
shown to reduce AHR and to lessen the eosinophilic
response [61].

Role of specialized pro-resolving mediators (SPM)
Asthma is an inflammatory lung disease with impaired
resolution mechanisms, and understanding more about
immune resolution could provide new treatments for
this disease. SPM, which are essential fatty acids de-
rived from regulating molecules, possess potent anti-
inflammatory and pro-resolving capacities [62, 63].
They include lipoxins, resolvins, protectins, and mare-
sins [64]. Investigating how ILC2s can be regulated
through SPM will provide new insights into asthma
pathobiology and could result in new therapeutic ap-
proaches [62].

� Lipoxins are the leading family of SPM [63]. Lipoxin
A4 might inhibit the stimulatory effects of PGD2,
IL-25, and IL-33 [16].

� Maresins are the most recently described SPM
family. In a recent study, researchers demonstrated
that maresins reduce lung inflammation and ILC2s
expression of cytokines and increase the repairing
capacity of ILC2s through amphiregulin (Fig. 1) [65].
Furthermore, regulatory T cells (Tregs) play a
mandatory role in this interaction. Therefore, as
potent regulators of Tregs and ILC2s, maresins may
be promising therapeutic targets for asthma.

Role of leukotrienes and prostaglandins
Human ILC2s are stimulated by arachidonic acid metab-
olites, such as leukotrienes [32] and prostaglandins [16].
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� Lung ILC2s express receptors for cysteinyl
leukotrienes, including cysteinyl leukotriene
receptor 1 (CysLT1R), the high-affinity receptor
for leukotriene D4 (LTD4). Following stimulation
by LTD4, ILC2s produce IL-4, IL-5, and IL-13.
Montelukast, a CysLT1R antagonist, can prevent
the IL-5 production stimulated by leukotriene C4

and LTD4 [32].
� Prostaglandin D2 (PGD2) is a positive regulator of

ILC2s, inducing ILC2s migration and production of
type 2 cytokines [16, 66]. PGD2 binds to its recently
characterized receptor, Chemokine receptor, a
homologous molecule expressed on T helper type 2
cells (CRTH2), which is a receptor expressed on
ILC2s that is similar to a TH2 receptor [67].

Recently, a study evaluating the effect of subcutaneous
grass pollen immunotherapy (SCIT) on peripheral ILC2s
demonstrated that the percentage of ILC2s in untreated al-
lergic rhinitis patients increased during pollen season, and
that this percentage is correlated with the patient’s symp-
tom scores. In contrast, the percentage of peripheral ILC2s
in allergic rhinitis patients who were treated with SCIT and
in control patients did not increase during pollen season
[68]. An evaluation of whether this same effect occurs in al-
lergic asthma patients remains to be conducted.

ILC3s in non-allergic asthma
Non-TH2 asthma is poorly defined and is less well under-
stood than allergic asthma phenotypes, even though it
Fig. 2 Mechanism of innate lymphoid cells group 3 in obesity induced ast
produce interleukin 17A (IL-17A) and IL-22. Macrophages (Mϕ) produce IL-1
resulting in airway hyperreactivity. This effect can be inhibited by an IL-1 re
micronutrients and microbiota. Vitamin D deficiency increases ILC3s’ functio
airway microbiota on ILC3s is still unknown
represents a large proportion of total asthma cases
[11]. This group of asthma phenotypes includes obesity-
associated asthma and neutrophilic asthma.
Although the role in non-allergic asthma of type 3 im-

munity and IL-17, which is believed to be a TH2-released
cytokine, have only recently become an area of interest,
a combination of bench and bedside approaches should
improve our understanding of these phenotypes [11].
Recent studies have emphasized the role of IL-17 on
steroid-resistant AHR [69, 70].
ILC3s are mainly found in gut-associated lymphoid tis-

sue (GALT) [71], but their presence in the lung has also
been demonstrated [72]. They express MHC class II and
are able to regulate the adaptive immune system by pre-
senting antigens [73]. IL-23 and IL-1β rapidly stimulate
ILC3s to produce IL-22, which plays a protective role
through lung epithelial cells during TH2 asthma (Fig. 2)
[74]. ILC3s may also produce IL-17A, which is a potent
neutrophil chemotactic agent. The presence of IL-22
and IL-17A in the sputum or peripheral blood is posi-
tively correlated with the severity of asthma [75–79].
However, further studies are needed to show the role of
these cytokines in non-TH2 asthma.

Obesity-associated asthma
This asthma phenotype is difficult to control because of
comorbidities and a lack of responsiveness to classic
asthma treatments [11, 80]. In a mouse model of obesity-
induced AHR, researchers showed a crucial role in AHR
for IL-17A, which is secreted mainly from ILC3s in the
hma and their regulation. Innate lymphoid cells group 3 (ILC3s)
β that engages IL-1 receptor on innate lymphoid cells group 3 (ILC3s)
ceptor (IL-1R) antagonist. ILC3s are sensitive to environmental factors,
ns whereas Vitamin A deficiency leads to a reduction; the influence of
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absence of adaptive immunity. The same study was the
first to report the presence of ILC3s in the bronchoalveo-
lar lavage fluid of patients with lung diseases. The re-
searchers also reported that patients with severe asthma
had a higher percentage of lung IL-17-producing ILC3s,
than patients with mild or no asthma. Surprisingly, a
protective role for ILC2s, in which they maintain the
metabolic homeostasis in obesity, has been recently
demonstrated [81, 82]. This unexpected finding sug-
gests that the role of ILC2s in obesity-associated
asthma should be studied further.

Regulation of ILC3s function and asthma
Although ILC3s are typically stimulated by IL-23 and
IL-1β, they are also sensitive to environmental signals,
such as caloric excess, micronutrients, and microbiota.
A vitamin A deficit in mice resulted in greatly decreased
numbers of ILC3s in the intestine, which increased the
susceptibility of these mice to bacterial infections. Subse-
quently, treatment with vitamin A restored the number
of ILC3s to normal levels; however, this treatment re-
duced the percentage of ILC2s [83]. In another study,
vitamin D deficiency improved ILC3s responses (Fig. 2)
[84]. ILCs are influenced by the ability of macrophages
to sense microbial signals and produce IL-1β [85]. Inter-
estingly, a study demonstrated that the AHR in obese
mice was completely resolved with an IL-1 receptor
antagonist, anakinra. The researchers also reported a de-
crease in the number of IL-17-producing lung ILC3s
[72]. The microbiota possessed by asthmatic individuals
in their airways is believed to have a higher potential to
be pathogenic than that of non-asthmatic individuals
[86]. How ILC3s contribute to and/or are impacted by
the roles of these vitamins and the influence of this
crosstalk with microbiota has not yet been evaluated.

Conclusion
Knowledge gained from recently recognized ILCs will
help us to fill in the missing gaps of innate molecular
pathways regarding asthma immunopathology. The lung
ILCs on the frontier, sensitive to environmental factors
including toxic and non-toxic substances, pathogenic
and nonpathogenic microorganisms, and allergens,
maintain homeostasis with tissue repair and remodel-
ing. They can initiate AHR and appropriately set up
the milieu for adaptive immunity by producing various
cytokines, generally previously described in other con-
texts, and by interacting with different immune cells.
ILCs represent one of the very first mediators for the
different phenotypes of asthma ‘syndrome’ [10]. How-
ever, it is still unclear whether additional subsets of
ILCs exist, and their role in innate immune memory
has yet to be determined. We need further studies in-
vestigating their interaction with other immune cells,
exogenous factors, and other micronutrients. A better
understanding of their pathogenesis in asthma will be
important for a better understanding of asthma pheno-
types and for developing better strategies for preventive
and therapeutic interventions.
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