

POSTER PRESENTATION

Open Access

Can prolyl endopeptidase reduce the IgE-reactivity of gluten proteins?

Frances Smith^{1*}, Peter Shewry², Neil Carr³, Joan Tomas⁴, Phil Padfield¹, Clare Mills¹

From Food Allergy and Anaphylaxis Meeting 2014 Dublin, Ireland. 9-11 October 2014

Background

Coeliac disease and IgE-mediated allergy to wheat are immune-mediated conditions which are thought to be triggered by digestion-resistant wheat proteins. Recently, a prolyl endopeptidase from *Aspergillus niger* (AnPEP) has been identified as being able to accelerate breakdown of gluten in food using an *in vitro* digestion system. Such digests have been analysed in terms of coeliac disease t-cell epitope levels[1] but have not yet been considered regarding the impact on IgE-reactivity. The amount of AnPEP required to be effective also has yet to be investigated.

Methods

We have used an *in vitro* batch gastric digestion model to break down a bread matrix with different amounts of AnPEP. SDS PAGE and immunoblots have been used to monitor protein digestion, and mass spectrometry has allowed for epitopes important to IgE-mediated wheat allergy and coeliac disease to be tracked. Sera were obtained from a Spanish patient panel with allergy to wheat induced by exercise and/or NSAIDs and used for additional immunoblots.

Results

SDS PAGE and immunoblotting with anti-gluten antibodies show more effective breakdown of gliadins and LMW glutenins in the presence of AnPEP. The impact of digestion on the IgE-reactivity of gluten by immunoblotting has been correlated with resistant proteins and peptides mapped by mass spectrometry. Use of 200 mg AnPEP/ g substrate showed the largest difference in digestion kinetics of gluten proteins however increased breakdown was still visible using 20 mg AnPEP/ g substrate.

¹The University of Manchester, Manchester, United Kingdom Full list of author information is available at the end of the article

Conclusions

AnPEP alters the patterns and pathways of gluten in a simulated gastroduodenal digestion system. The potential application of such enzymes to modify the allergenic potential of cereals is discussed.

Acknowledgements

BBSRC DRINC [BB/1006109/1]; EU CHANCE [CT 266331].

Authors' details

¹The University of Manchester, Manchester, United Kingdom. ²Rothamsted Research, Harpenden, United Kingdom. ³DSM Biotechnology Centre, Heerlen, The Netherlands. ⁴Department of Pneumology and Respiratory Allergy, Barcelona. Spain.

Published: 30 March 2015

Reference

 Mitea C, Havenaar R, Drijfhout JW, Edens L, Dekking L, Koning F: "Efficient degradation of gluten by a prolyl endoprotease in a gastrointestinal model: implications for coeliac disease.". Gut 2008, 57(1):25-32.

doi:10.1186/2045-7022-5-S3-P117

Cite this article as: Smith *et al.*: Can prolyl endopeptidase reduce the IgE-reactivity of gluten proteins? *Clinical and Translational Allergy* 2015 5(Suppl 3):P117.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit

