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Abstract

pulmonary exacerbations in ABPA are discussed.

For decades, fungi have been recognized as associated with asthma and other reactive airway diseases. In contrast
to type I-mediated allergies caused by pollen, fungi cause a large number of allergic diseases such as allergic
bronchopulmonary mycoses, rhinitis, allergic sinusitis and hypersensitivity pneumonitis. Amongst the fungi,
Aspergillus fumigatus is the most prevalent cause of severe pulmonary allergic disease, including allergic
bronchopulmonary aspergillosis (ABPA), known to be associated with chronic lung injury and deterioration in
pulmonary function in people with chronic asthma and cystic fibrosis (CF). The goal of this review is to discuss
new understandings of host-pathogen interactions in the genesis of allergic airway diseases caused by

A. fumigatus. Host and pathogen related factors that participate in triggering the inflammatory cycle leading to

Review

Fungi and Respiratory Allergy

Fungi are ubiquitous and responsible for causing a
broad spectrum of type I-IV hypersensitivity diseases
[1]. Recent epidemiologic studies clearly outline the link
between fungal sensitization and exacerbations of aller-
gic asthma, leading to increased morbidity and mortality
[2-4]. The major respiratory manifestations caused by
fungi include allergic bronchopulmonary mycoses
(ABPM), severe asthma with fungal sensitization (SAFS),
hypersensitivity pneumonitis, fungal sinusitis and allergic
rhinitis [1]. In contrast to other allergens (e.g. pollen),
fungi also pose a life-threatening risk for invasive pneu-
monia in immunocompromised patients; further empha-
sizing their significant impact on human health. It is
now understood that the pathogenesis of diseases like
asthma and allergy is determined by the interactions
between host, genes and environment [5,6]. In this
review, we focus on the role of filamentous fungi in
respiratory allergic diseases, and discuss how fungi med-
iate T helper (Th) 2 -mediated allergic diseases as a
result of host-pathogen interactions that lead in ineffec-
tive clearance of spores, and how predisposing factors
like host genetics determine outcomes for respiratory
diseases.
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Epidemiology and Outcomes

Amongst the filamentous fungi, Aspergillus species have
been strongly linked with exacerbations of asthma and
other respiratory allergic diseases [2,7]. Over 80% of
Aspergillus-related conditions, such as extrinsic allergic
alveolitis, asthma, allergic sinusitis, chronic eosinophilic
pneumonia, hypersensitivity pneumonitis, SAFS, and
allergic bronchopulmonary aspergillosis (ABPA) are
most frequently caused by A. fumigatus [8]. ABPA is the
most complex allergic manifestation caused by A. fumi-
gatus, and was first reported in the United Kingdom by
Hinson et al. in 1952 [9]. Other fungi such as Crypto-
coccus neoformans and Scedosporium apiospermum are
also associated with similar clinical manifestations
broadly referred to as ABPM.

Improved diagnostic methods and awareness have led
to recent reports of higher prevalence of ABPA in
patients suffering from chronic asthma (1-40%) and
acute severe asthma (~38%) [10-12]. The prevalence of
A. fumigatus hypersensitivity is even higher in patients
with acute severe asthma (~51%) [12]. A. fumigatus-sen-
sitized asthmatic patients have been reported to have
poorer lung function [13,14]. ABPA is also prevalent in
up to 7-15% of cystic fibrosis (CF) patients [15-17].
ABPA leads to poorly controlled asthma with pulmon-
ary exacerbations and detrimental consequences; depen-
dence on oral-corticosteroids increases the risk for
secondary infections [18]. In rare cases, ABPA disease
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has also been reported to complicate other lung diseases
including idiopathic bronchiectasis, chronic obstructive
pulmonary disease (COPD) and chronic granulomatous
disease [19-21]. Moreover, ABPA has also been reported
in patients with pulmonary aspergilloma and chronic
necrotizing pulmonary aspergillosis (reviewed in [16]).
Diagnostic parameters of ABPA include asthma, roent-
genographic fleeting pulmonary opacities, central
bronchiectasis, type I and type III hypersensitivity to A.
fumigatus antigens (discussed in more depth below),
and increased peripheral blood eosinophilia [22]. ABPA
includes several stages of exacerbations (acute and
recurrent) and remissions, central bronchiectasis with
pulmonary fibrosis and a possible respiratory failure
[22]. However, not all ABPA patients at different stages
develop these diagnostic criteria, and some of these fea-
tures overlap with those of A. fumigatus hypersensitivity
and asthmatic patients. Uniformity of diagnostic para-
meters is still needed for improving outcomes in ABPA
patients.

Pathogenesis of Fungi & Airway Clearance
The most common predisposing factor associated with
ABPA pathogenesis is defective clearance of conidia in
airways. Airway epithelium, as the first line of defense,
extrudes inhaled fungal spores through mucociliary
action. Fungal spores evading epithelial mucociliary
clearance reach alveoli, and are dealt with by resident
phagocytes; neutrophils, as effector cells, efficiently kill
germinated hyphal forms through non-oxidative or oxi-
dative-mediated responses. Airway myeloid cells also
recognize fungi through pattern recognition receptors
(PRRs) such as toll like receptors (TLRs) and Dectin-1,
and stimulate the secretion of proinflammatory cyto-
kines/chemokines [8,23]. A breached innate immune
defense by fungal spores is required for their germina-
tion and establishment of fungal-mediated allergies as
dormant conidia are immunologically inert [24]. It is
thought that ineffective clearance of spores results lar-
gely from structural abnormalities in the airway epithe-
lium, as observed in patients with allergic asthma or
other causes of chronic lung disease, allowing for germi-
nation of spores into vegetative cells (hyphae) [4,25-29].
Fungal hyphae secrete proteases and toxins that
damage the airway epithelium, leading to the loss of
tight junctions. Epithelium damage leads to increased
exposure of A. fumigatus antigens to pulmonary dendri-
tic cells (DCs), which prime naive Th-cells to Th2 that
secrete cytokines such as IL-4, IL-5 and IL-13 leading to
IgE isotype switching of B-cells, increased secretion of
A. fumigatus-specific IgG, IgE and total IgE antibodies,
and pulmonary eosinophilic influx. More than 20
allergens/antigens of A. fumigatus have been described
to date (http://www.allergen.org). Moreover, several
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chemokines such as Monocyte Chemotactic protein
(MCP-1), Regulated on Activation and Normal T-cell
expressed (RANTES), IL-8 and macrophage inflamma-
tory protein-la. (MIP-1a) secreted by phagocytic and
non-phagocytic cells, perpetuate inflammatory pathology
of ABPA [17].

Immunopathogenesis of ABPA in CF patients: Newer
Understandings

CF is caused by mutations in cystic fibrosis transmem-
brane conductance regulator (CFTR), present on the
apical membranes of epithelial cells. Over 1,500 muta-
tions in CFTR are known, and the most common is the
deletion of phenylalanine at position 508 (AF508), which
causes CFTR protein misfolding and retention in the
endoplasmic reticulum (ER) [30]. Filamentous fungi are
commonly isolated from sputum of CF patients and A.
fumigatus is the most prevalent fungal species [31,32].
A. fumigatus-mediated chronic asthma or ABPA in CF
patients significantly deteriorates lung function leading
to poorer outcomes [27,32-37]. Diagnosis of ABPA in
CF patients further poses a significant challenge as diag-
nostic criteria such as pulmonary infiltrates, bronchiec-
tasis and obstructive lung disease are common features
in CF patients with or without ABPA.

People with ABPA are known to have higher frequen-
cies of CFTR mutations than the healthy population,
suggesting that CFTR mutations possibly impact the
clearance of A. fumigatus spores [38]. Using the bron-
chial epithelial cell lines and primary murine tracheal
cells, we observed that CFTR mutations/deficiency
impact binding and uptake of A. fumigatus conidia with
differential secretion of inflammatory mediators by CF
cells [39]. Studies have reported improved clinical out-
comes for ABPA patients treated with azoles [40,41].
Moreover, anti-fungal therapy also led to the better lung
function in A. fumigatus-sensitized CF patients [42].
These studies indicate that A. fumigatus actively partici-
pate in triggering Th2-type responses that perpetuates
in the setting of CFTR mutations [40-42].

Several studies have linked CF genotype to cytokine
dysregulation and have shown that immune responses
are biased towards Th2 type with increased secretion of
proinflammatory cytokines by CF epithelial cells
[17,43,44]. These studies indicate that CFTR mutations
lead to cytokine milieu which can shift the balance of A.
fumigatus-specific CD4+ T-cell responses towards Th2.
It is also possible that in the setting of CF, there is an
increased frequency of A. fumigatus-specific CD4+ Th2
cells. Studies by Allard et al. showed that T-cells from
naive CFTR-deficient mice produce higher levels of
Th2-cytokines [45]. This study also demonstrated that
mice with CFTR-deficiency or mutations develop pro-
found Th2-mediated response to hyphal antigens of A.
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fumigatus [45]. That CFTR mutations regulate Th1/Th2
balance was further evident by Muller et al. studies
which demonstrated that intra-tracheal delivery of
recombinant truncated CFTR reduces levels of Th2-
cytokines and IgE antibody in CFTR-deficient mouse
model of ABPA [46].

The mechanisms of Th2 bias have not been precisely
defined. Besides epithelial cells, CFTR is also expressed
by other immune cells such as lymphocytes, and alveolar
macrophages. Di et al. demonstrated that CFTR-defi-
cient alveolar macrophages fail to undergo lysosomal
acidification, potentially leading to an environment con-
ducive for the growth of pathogenic microorganisms
[45]. Deficiency of CFTR on CD4+ T-lymphocytes leads
to aberrant calcium fluxes causing an increased nuclear
translocation of Nuclear factor of activated T-cells
(NFAT) possibly driving Th2-biased responses [47].
Most recently, Kreindler et al. demonstrated that Th2
reactivity in CF-ABPA patients was dependent on the
expression of costimulatory molecule OX40 ligand
(OX40L) on DCs which decreased on in vitro addition
of vitamin D3 [48]. Thus, CF patients exhibit multifac-
torial defects in both pulmonary innate and adaptive
immunity to pathogens; modulation of host immunity
due to the chronic airway infection with A. fumigatus
possibly leads to the establishment of ABPA.

Fungi- Factors and Host Immune Response

Fungal Proteases

Fungal proteases are potent allergens, triggering pul-
monary allergic responses [7,49-51]. Aspergillus species
are known to produce large amounts of proteases that
induce IL-6, IL-8 and MCP-1 production by airway
epithelial cells; these enzymes also disrupt epithelial
tight junctions and induce cellular desquamation
[26,52-54]. Recently, Porter et al. reported that proteases
derived from A. niger induce robust allergic lung disease
in mice [7].

Most recently, it has been noted that proteases acti-
vate protease activated receptors (PARs). PARs are G-
protein coupled receptors present on the airway cells
and other cells such as mast cells, eosinophils, neutro-
phils, macrophages, and lymphocytes [55]. To date, four
PARs have been identified; PAR-2 is the most important
in allergic airway disease owing to its increased expres-
sion on the airways of asthmatic patients [56]. Interest-
ingly, injured airway epithelial cells also secrete trypsin,
a PAR-2 agonist that further aggravates allergic inflam-
matory responses. Using murine models, PAR-2 has
been reported to mediate pulmonary eosinophilc infil-
tration and airway hyperreactivity suggesting a role in
exacerbating Th2-mediated responses [57]. Moreover,
PAR-2 promotes fibrosis and increased IgE production
in allergic diseases (reviewed in [55]). The role of TLRs
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in regulating PARs signaling and inflammatory
responses to A. fumigatus has also been reported. Stu-
dies by Moretti et al. reported that A. fumigatus pro-
teases promote host pulmonary inflammatory responses
by downregulating PAR-2 expression through a TLR-4
dependent mechanism [58]. Thus, it is possible that pro-
teases secreted by A. fumigatus growing on airway
epithelium trigger IgG and IgE mediated allergic
responses through crosstalk between PARs and TLRs-
mediated signaling pathways leading to pulmonary com-
plications as ABPA.

Bypassing of the tolerogenic mechanisms is also
required to provoke Th2-mediated allergic responses in
asthma patients [59]. Studies by Kheradmand et al.
showed that fungal proteases have the capability to
abort airway tolerance and when instilled in airways can
activate Th2-mediated allergic responses without requir-
ing adjuvant priming [49]. DCs also have an important
role in maintaining tolerance in lungs by production of
IL-10, an immunoregulatory cytokine that induces
development of TGF-B expressing CD4+ T-regulatory
cells (Tregs) [60]. In a recent study, Kriendler et al.
showed that CD4+ T-cells from cohort of A. fumigatus
colonized non-ABPA CF patients had an increased fre-
quency of TGF-B-expressing Tregs compared to CF-
ABPA patients [48]. This study suggested that tolerance
against A. fumigatus antigens in CF-ABPA patients is
defective and correlated to vitamin-D deficiency.

Fungal Cell Wall components

The fungal cell wall is primarily composed of polysac-
charides such as galactomannan, chitin, a- and p-glu-
cans [61]. It is now well documented that the cell wall
of swollen or germinated A. fumigatus conidia is com-
posed of B-glucan, which triggers Dectin-1 mediated
inflammatory responses [62-64]. Dectin-1 activated DCs
promote the differentiation of Th17 and Thl cells in
vivo and can also convert Tregs into Th17 cells [65,66].
The role of Dectin-1 in airway epithelial cells is not well
defined; however, recent studies did show Dectin-1 sur-
face expression after TLR-2 stimulation with Mycobac-
teria and fungal antigens [67,68]}. CF airway epithelial
cells were reported to have decreased expression of
TLR-4 compared to healthy subjects leading to reduced
innate immune responses to P. aeruginosa infection
[69]. It is likely that the host genetic makeup determines
TLR- and C-type lectin receptor(s)-specific immune
responses to A. fumigatus cell wall components.

Chitin has been shown to induce host-chitinases in an
A. fumigatus-infected guinea pig model which was
diminished by an anti-fungal treatment [70]. Mice chal-
lenged with chitin demonstrated infiltration of IL-4
expressing eosinophils and basophils in lungs; this did
not occur with chitin pretreated with acidic mammalian



Chaudhary and Marr Clinical and Translational Allergy 2011, 1:4
http://www.ctajournal.com/content/1/1/4

chitinase (AMCase) or in mice overexpressing AMCase
[71]. AMCase is known to be expressed by murine air-
way epithelial cells and alveolar macrophages, and has
been reported to impart anti-fungal immunity against
chitin-containing organisms [72]. In this regard, Chen et
al. recently reported in vitro inhibition of fungal activity
by AMCase [73]. Thus, pulmonary immune response to
various fungal components could determine the out-
come towards protective or pathogenic.

Host Genetic Susceptibility

Human leukocyte antigen (HLA) alleles

Genetic studies have revealed that the expression of spe-
cific MHC 1II alleles could determine development or
protection against ABPA [74]. The frequency of HLA-
DR2 (DRB1 *1501 and DRB1 *1503) or DR5 alleles has
been reported to be higher in ABPA patients compared
to CF or in asthmatic patients without ABPA [74]. This
group also suggested the role of HLA-DRB1 #1502 as a
resistance allele against the development of ABPA.
Using humanized transgenic mice, they reported that A.
fumigatus infection in DRB1*1501 and DRB1 *1503
strains cause profound ABPA-like pathology while the
HLA-DRBI1 *1502 strain mounts a protective Thl-type
response [75]. It is now becoming clear that T cell
receptor-MHC peptide ligand interactions play an
important role in regulating the activation of immune
responses and Th1/Th2 cytokine balance [76].

Surfactant protein-A (SP-A) gene and mannan-binding
lectin (MBL) polymorphisms

Genetic association studies have shown that polymorph-
isms in the SP-A and MBL gene lead to a predisposition
to develop ABPA [77-79]. Saxena et al. showed that
ABPA patients have a higher frequency of the A1660G
SP-A2 allele than matched controls [77]. In line with
this, another study also reported that ABPA patients
have increased frequency of the T allele at T1492C and
the G allele at G1649C of SP-A2 gene, and also higher
frequency of TT genotype (71%) at 1492 of SP-A2 than
controls [79]. Patients with the 1011A MBL allele were
observed to have clinical features consistent with ABPA,
such as increased eosinophilia, total IgE antibodies and
lower FEV1 values [78]. Using murine models of allergic
and invasive aspergillosis, the therapeutic potential of
SP-A/D and MBL has been reported by Madan and col-
leagues (reviewed in [80]). These studies suggest a role
of surfactant proteins and lectins as possible modulators
of A. fumigatus-induced inflammation and allergy.

Cytokine gene polymorphisms

Patients with ABPA have a higher frequency of the IL-
15 +13689*A allele and A/A genotype with a lower fre-
quency of the TNF-alpha-308*A/A genotype [81].
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Another study reported that ABPA patients have a sin-
gle nucleotide polymorphism (SNP) in the extracellular
IL-4 receptor alpha, ile75val, which could lead to
increased sensitivity to IL-4 stimulation [82]. Increased
risk of A. fumigatus colonization in CF patients has
been associated with polymorphisms in the promoter
region of the IL-10 gene; there is a significant correla-
tion between the -1082GG genotype with A. fumigatus
colonization and ABPA [83].

Polymorphisms in Chitinase and Chitinase-like proteins
Chitinases are enzymes known to cleave chitin present
in fungal walls, parasites, insects and crustaceans [84].
Polymorphisms in two mammalian chitinases viz.
AMCase and chitotrisidase (CHIT), and chitinase-like
proteins such as YKL-40 have been reported to play
important role in asthma susceptibility [84]. Polymorph-
isms in the AMCase gene are known to be associated
with asthma [85,86]. Mutations in CHITI gene were
also reported in patients with SAFS and can also be a
risk factor for ABPA [87]. It has also been shown that
high mold exposure can significantly modulate the effect
of SNPs in CHITI gene on severe asthma exacerbations
leading to increased hospitalizations- an example of
gene-environment interactions as a determinant for an
outcome of the disease [88].

Conclusions

Taken together, it is now becoming evident that respira-
tory complications caused by A. fumigatus are the result
of genes and the environment such that poor airway clear-
ance of fungal spores drives a skewed adaptive response,
and subsequent inflammation-driven lung damage. It is
intriguing that we all inhale A. fumigatus conidia but only
some people develop pathological responses to this fungus.
Differences in make-up of multiple PRRs and cytokine
genes in the propagation of inflammatory responses are
involved in overall risks for allergic responses to fungi.
More studies are needed to define precise interaction and
decode genetic susceptibilities.
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