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Abstract 

The mechanisms involved in the induction of allergic sensitization by pollen are not fully understood. Within the last 
few decades, findings from epidemiological and experimental studies support the notion that allergic sensitization is 
not only dependent on the genetics of the host and environmental factors, but also on intrinsic features of the aller‑
genic source itself. In this review, we summarize the current concepts and newest advances in research focusing on 
the initial mechanisms inducing pollen sensitization. Pollen allergens are embedded in a complex and heterogeneous 
matrix composed of a myriad of bioactive molecules that are co‑delivered during the allergic sensitization. Surpris‑
ingly, several purified allergens were shown to lack inherent sensitizing potential. Thus, growing evidence supports 
an essential role of pollen‑derived components co‑delivered with the allergens in the initiation of allergic sensitiza‑
tion. The pollen matrix, which is composed by intrinsic molecules (e.g. proteins, metabolites, lipids, carbohydrates) 
and extrinsic compounds (e.g. viruses, particles from air pollutants, pollen‑linked microbiome), provide a specific 
context for the allergen and has been proposed as a determinant of Th2 polarization. In addition, the involvement 
of various pattern recognition receptors (PRRs), secreted alarmins, innate immune cells, and the dependency of DCs 
in driving pollen‑induced Th2 inflammatory processes suggest that allergic sensitization to pollen most likely results 
from particular combinations of pollen‑specific signals rather than from a common determinant of allergenicity. The 
exact identification and characterization of such pollen‑derived Th2‑polarizing molecules should provide mecha‑
nistic insights into Th2 polarization and pave the way for novel preventive and therapeutic strategies against pollen 
allergies.
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Background
Worldwide, the sensitisation rate to pollen allergens is 
around 40% and over 400 million people suffer from 
allergic rhinitis symptoms caused by pollinosis [1–4]. 
Wind plays a key role in the induction of pollen sen-
sitization enabling the direct contact of pollen with 
the human immune system at sites such as the upper 
respiratory tract, the ocular and oral mucosal surfaces, 

where the humid milieu facilitates the release of soluble 
allergens and other co-delivered bioactive compounds 
from the pollen matrix. Among wind-pollinated plants, 
the four plant families Oleaceae, Poaceae, Asteraceae 
and Betulaceae represent the main sources of allergenic 
pollen in Europe [5, 6]. Up to now, 987 different aller-
gens have been officially described, of which 195 are 
registered as plant-derived airborne allergens (https ://
www.aller gen.org, 1st April 2020). Besides triggering 
seasonal rhinoconjunctivitis symptoms, a clinical con-
dition also known as “hay fever”, pollen can also cause 
asthma, skin inflammation, and even food allergies 
due to structural homology of food antigens to some 
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pollen allergens [7–14]. The rising numbers of pollen-
affected individuals, the variety of symptoms and the 
impact on the patients´ quality of life are making pollen 
allergies a vast and serious socio-economic burden of 
Western civilization [15]. In this respect, it is of utmost 
importance to understand the underlying mechanisms 
of sensitization to pollen allergens in order to develop 
innovative therapeutic strategies to efficiently tackle 
pollinosis. The scope of this review is to summarize 
the current concepts and newest advances in research 
focusing on pollen sensitization.

Current concepts of allergic sensitization
Exposure to environmental proteins does not normally 
trigger an immune response due to their non-pathogenic 
nature, yet allergic sensitization to pollen molecules is a 
global health problem. Allergies are thus considered type 
1 (IgE-mediated) hypersensitivity reactions to innocuous 
environmental antigens that is characterized by an imbal-
anced immune response [16, 17].

IgE‑mediated allergic immune response
In type 1 hypersensitivity reactions, antigen-presenting 
cells (APCs), mainly dendritic cells (DCs), control the 
differentiation of naïve T helper cells into effector T 
cells, such as Th1 or Th2 cells, depending on the nature 
and source of the antigen [17, 18]. Upon initial allergen 
encounter, Th2 polarization, a hallmark of allergic sen-
sitization, is triggered by interleukin 4 (IL-4) signalling 
and characterized by the secretion of Th2-associated 
cytokines (IL-4, IL-5 and IL-13) [19]. While IL-4 has a 
key role in the initiation of sensitization, IL-5 and IL-13 
are relevant in later stages of the sensitization process 
as well as the effector phase. IL-5 is mainly involved in 
airway eosinophilia and hyperresponsiveness, whereas 
IL-13 mainly contributes to the maintenance of allergic 
disease by recruiting and activating various effector cells 
to the site of allergic inflammation [20, 21]. Upon activa-
tion by Th2 cytokines, B cells undergo class-switching to 
produce antigen-specific immunoglobulin E (IgE) anti-
bodies, which prime mast cells and basophils by binding 
to its high affinity receptor FcεRI. Allergic sensitization is 
defined by the presence of allergen-specific IgE. Upon re-
exposure, allergen-IgE cross-linking causes cell degranu-
lation and release of inflammatory mediators within 
minutes, leading to the recruitment of other immune 
cells, and, consequently, triggering the onset of allergic 
symptoms [22]. Besides its role in allergic diseases, type 2 
immunity is also associated with homeostasis and protec-
tive immune responses such as wound healing, clearance 
of parasitic infections and venom resistance [23–35].

Factors contributing to allergic sensitization
Allergy is generally considered a multifactorial disease, 
but the individual factors and their respective contri-
bution to sensitization are not yet fully defined. The 
prevalence of allergic diseases has been associated with 
a westernized lifestyle—the so-called hygiene hypoth-
esis—but also with environmental and genetic factors. 
Linkage analysis studies have already revealed allergy-
relevant loci, while genome-wide association stud-
ies hold the promise for new and reproducible genetic 
associations with allergic diseases [36]. However, given 
the multifactorial nature and heterogeneous manifesta-
tion of allergic phenotypes, the integration of genetic 
predisposition data into a coherent picture remains 
challenging.

The hygiene hypothesis by Strachan, which has been 
redefined and updated over the years with the continu-
ous emergence of new data, presently postulates that 
several variables associated with a westernized lifestyle, 
such as diminished exposure to microbes, environmental 
changes, medication, diet, parasitic infections and oth-
ers, influence the susceptibility of the immune system to 
allergic diseases [37–40]. For instance, in contrast to life 
in urbanized cities and poor nutrition, growing up near 
farms and fibre-rich nutrition were classed as beneficial 
factors leading to immune tolerance [41]. While it is well 
known that environmental stimuli are directly linked to 
epigenetic modifications, the field has been understudied 
in regard to allergic diseases [42]. In summary, experi-
mental and epidemiological findings within the last few 
decades support the view that the allergic sensitization 
process is not solely dependent on the genetics of the 
host and environmental factors, but also on intrinsic 
features of the allergenic source itself. In addition, epi-
genetic mechanisms might contribute to the initiation of 
sensitization and maintenance of allergic diseases [43].

Initiation of sensitization by allergenic pollen
The activation of the innate immune system
Besides the known adaptive immunity components 
involved in allergic sensitization, a superordinate role can 
be allocated to the epithelium itself since it represents 
the primary contact site of the human body encounter-
ing the pollen. Whether sensitization to pollen-derived 
allergens occurs at the oral mucosa, the olfactory or cor-
neal epithelium is still a matter of debate; the skin has 
also been proposed as a sensitization route for allergenic 
pollen [44–46]. Upon encounter, the pollen hydrates and 
releases a hydrophilic cocktail consisting of allergenic 
and non-allergenic proteins and various other bioactive 
molecules, including lipid mediators, inducing an inflam-
matory milieu favouring Th2 polarization [47–51].
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Epithelial cells and APCs, are endowed with a series of 
specialized pattern recognition receptors (PRRs), such as 
Toll-like receptors (TLRs) and protease activated recep-
tors (PARs), which are required to provide first defence 
mechanisms in order to keep pathogens under surveil-
lance. The vast majority of allergenic tree, grass and weed 
pollen, including white birch (Betula verrucosa), rye grass 
(Lolium perenne) and short ragweed (Ambrosia arte-
misiifolia), contain proteolytic enzymes able to disrupt 
epithelial cells [52–55]. Most identified proteins thereof 
belong to the family of cysteine, serine and aspartic pro-
teases, and are responsible for the disruption of tight 
junctions enabling the transportation of allergens across 
the epithelium. The occurring damage of epithelial cells 
was observed to be irreversible, but can be blocked by 
protease-specific inhibitors [56]. However, the question 
emerges as to what extent these proteases originate from 
pollen itself (intrinsic origin) or are derived from pollen-
inhabiting microorganisms (extrinsic origin) [52]. Puri-
fied pollen allergens that are per se non-proteases, such 
as Ole e 1 and Bet v 1, were also observed to interact with 
the epithelial barrier [46, 57, 58]. Interestingly, interac-
tion of Japanese cedar (Cryptomeria japonica) Cry j 1 and 
epithelial cells led to the activation of PAR2 and stimu-
lation with Japanese hop (Humulus japonicus) increased 
the PAR2 expression levels on human airway epithelial 
cells [59, 60]. Direct effects observed for pollen-derived 
proteases on PAR activation are, however, still lacking 
but seem to be dependent on the protease class and its 
abundance within the respective pollen source [55].

Upon stimulation with pollen extracts, epithelial 
cells release a number of pro-inflammatory cytokines, 
including IL-1, IL-6, IL-8 and TNFα [55]. Addition-
ally, the secretion of pro-allergic alarmins (e.g. thymic 
stromal lymphopoietin, (TSLP); IL-33; IL-25) favours 
a Th2-biased immune response and promotes allergic 
sensitization.

The levels of TSLP are increased in the nasal secretion 
of patients suffering from allergic rhinitis, but there is no 
evidence directly correlating TSLP expression and pol-
len allergen-specific IgE levels, suggesting a more gen-
eral role of TSLP in the initiation and maintenance of a 
type 2 inflammatory response [61–63]. In fact, TSLP has 
been considered a key cytokine driving Th2 polarization 
through (i) the activation of DCs and macrophages to 
express OX40 ligand (OX40L), which in turn binds OX40 
on naïve  CD4+ T cells, and (ii) direct induction of  IL4+ 
and IL-13+  CD4+ T cells [64–66]. The pollen-induced 
secretion of TSLP and the associated type 2 inflamma-
tion were observed to be dependent on TLR4 and mye-
loid differentiation primary response 88 (MyD88), and 
probably linked to oxidative stress [60, 66–68]. In this 
respect, stimulation of epithelial cells with pollen extracts 

from short ragweed, birch, timothy grass and mountain 
cedar caused elevation in the levels of reactive oxygen 
species (ROS) [60, 69–71]. Thus, the contribution of oxi-
dative stress to the allergic sensitization is likely medi-
ated by ROS, which up-regulates the expression of PAR2 
in epithelial cells, as well as the secretion of TSLP and 
IL-8 [60, 70]. The latter is a neutrophil chemotactic factor 
responsible for the recruitment of neutrophils in allergic 
airway inflammation. Although pollen were observed to 
induce both TLR4-dependent and independent ROS pro-
duction, Hosoki et al. showed that short ragweed pollen 
only induced neutrophil recruitment in a TLR4-depend-
ent manner, which in turn facilitated allergic sensitiza-
tion [67, 69, 71].

As described for TSLP, a TLR4-/MyD88-dependency 
has also been observed for pollen-induced IL-33-medi-
ated Th2 responses [67, 72]. IL-33 binds and up-regulates 
its receptor, ST2, expressed on DCs and  CD4+ T cells, 
thus triggering Th2 polarization and the expression of 
the associated cytokines IL-5 and IL-13 [73–76]. TLSP 
receptor and ST2 double-knockout mice showed a com-
plete ablation of the Th2 response, with decreased Th2-
related eosinophilia and specific IgE production, when 
compared to wild type animals [76]. These observations 
support the notion that both TLSP and IL-33 cytokines 
are key players in allergic sensitization to pollen. On the 
other hand, aluminium hydroxide per se, which is fre-
quently used as adjuvant in most in vivo models of pol-
len sensitization, facilitates the release of IL-33, making it 
difficult to assess the individual contribution of IL-33 to 
allergic sensitization [77].

Another cytokine implicated in the allergic sensitiza-
tion is IL-25, which has the potential to initiate and acti-
vate type 2 innate lymphoid cells (ILC2) and Th2 cells 
[78]. Increased concentrations of IL-25 were observed in 
nasal secretion and supernatants from patients allergic to 
Japanese cedar pollen [79]. However, in a direct compari-
son with IL-33, IL-25 is less efficient in mediating pollen-
induced airway hyperreactivity [80, 81].

In general, the involvement of TLR4 signalling and its 
ligands, such as the endotoxin lipopolysaccharide (LPS), 
in the initiation of allergic sensitization is still controver-
sially debated. Although low doses of LPS were shown to 
be associated with the induction of Th2 cells [82, 83], it is 
unclear whether TLR4 exerts a more general role in the 
maintenance of inflammatory responses or is essential 
in initiating Th2 polarization. Whereas TLR4-deficiency 
abrogated the ability of birch pollen to activate DCs, 
stimulation of TLR4-deficient DCs with pollen extracts 
from Japanese cedar, Japanese cypress, short ragweed or 
Kentucky bluegrass (Poa pratensis) caused up-regulation 
of maturation markers and induced cytokine secretion 
similarly to those observed in wild type cells. In vivo, only 
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endotoxin-contaminated mugwort pollen (Artemisia vul-
garis) was able to induce allergic sensitization [84, 85]. In 
line with these observations, it has been shown that co-
administration of TLR4 and TLR2 agonists resulted in a 
general suppression of the allergic response due to shift-
ing of the immune balance toward Th1 [86, 87]. Taken 
together, these findings suggest that for some, but not for 
all pollen sources, activation of DCs, a necessary signal 
for T cell polarization, occurs in a TLR4-independent 
manner. In contrast, Dittrich et  al. demonstrated that 
innate immune signals are dispensable for the initiation 
of an inflammatory allergic response to allergens since 
IL-4, the key cytokine driving Th2 polarization, can 
bypass TLR4- and MyD88-depedent signalling pathways 
[88]. Despite the controversies, up-regulation of extracel-
lular TLR2 and TLR4 as well as intracellular TLR3 were 
detected in the nasal mucosa of allergic rhinitis patients 
upon allergen challenge [89]. As yet, studies investigating 
other types of TLRs in the context of allergic sensitiza-
tion are scarce.

Origin and essentiality of IL‑4
In allergic sensitization, DCs are activated either directly 
by the allergenic source or indirectly via epithelial cell-
secreted alarmins. In turn, activated DCs instruct Th2 
polarization by providing three important signals to naïve 
T cells: (i) antigen-derived peptides presented via MHC-
II, (ii) expression of co-stimulatory molecules and (iii) the 
secretion of pro-inflammatory cytokines and chemokines 
[90]. Activated DCs associated with Th2 priming show 
an activation of the transcription factors interferon reg-
ulatory factor 4 (IRF4) and GATA-3 [91, 92]. DCs also 
up-regulate the expression of specific Th2-associated 
surface markers, including OX40L and the notch ligands 
jagged-1 and -2 [91–95]. Furthermore, activated DCs 
secrete CCL17, CCL22 and CXCL13 chemokines and 
express CXCR5 and CCR7 chemokine receptors, which 
enable them to migrate to the lymph nodes where they 
prime naïve T cells to become antigen-specific Th2 cells 
[93, 96–99].

Apart from the extraordinary role of DCs linking innate 
to adaptive immunity, the source for the initial IL-4, 
which is required for efficient Th2 priming, remains elu-
sive. Although basophils, mast cells and NKT cells were 
shown to produce IL-4, their role remains controversial, 
particularly in the context of pollen sensitization [100–
103]. Once generated, Th2 cells themselves represent 
the most important source of IL-4. This raises the ques-
tion of whether IL-4 is strictly required for the initiation 
of Th2 polarization. IL-33 and IL-25, for instance, are 
able to mount a STAT6/GATA-3/IL-4-independent Th2 
response via the activation of ILC2s and the accompanied 
secretion of IL-13 [78, 104–107]. Similarly, TSLP induced 

Th2 polarization in the absence of IL-4 via the involve-
ment of NF-κB and STAT5 [106]. However, the role of 
STAT5, IRF4, and NKT cells in the context of pollen sen-
sitization is unclear and requires in-depth investigations.

In summary, the mechanisms involved in the induc-
tion of allergic sensitization by pollen are not fully under-
stood. In fact, it seems that different allergenic pollen 
sources interact with distinct innate receptors and signal-
ling pathways. The involvement of various PRRs, secreted 
alarmins, and innate immune cells, and the dependency 
of DCs in driving pollen-induced Th2 inflammatory pro-
cesses suggest that allergic sensitization to pollen most 
likely results from particular combinations of pollen-
specific signals rather than from a common determinant 
of allergenicity. An overview of the initiation process of 
allergic sensitization is presented in Fig. 1 and Table 1.

The concept of the pollen matrix in allergic 
sensitization
The question “why only some environmental proteins 
cause aberrant Th2-mediated allergic sensitization and 
others not” has attracted much attention of research-
ers. Pollen allergens share specific physicochemical 
properties, such as hydrophilicity, posttranslational 
modifications and structural stability that favour the 
bioavailability and facilitate the antigen uptake by APCs 
[108–110]. Only a few pollen allergens, including Cyn d 
1, Cup a 1 and Amb a 11, exhibit an intrinsic adjuvant 
activity [75, 111, 112]. Glycan structures on Cyn d 1 from 
Bermuda grass pollen, for instance, mimic a molecular 
pattern that binds C-type lectin receptors, PRRs recog-
nizing complex glycan structures [111]. The cysteine 
protease Amb a 11 from ragweed pollen was shown to 
initiate a type 2 inflammation via protease-mediated 
disruption of airway epithelia [112]. Despite the afore-
mentioned characteristics, no generally applicable con-
cept has been put forward to explain the molecular basis 
of allergenicity, i.e. the capacity of certain molecules to 
induce type 2 inflammation and specific IgE antibodies 
[113]. Despite the lack of common characteristics, aller-
gens are still viewed as the main drivers of the allergic 
immune response since they trigger the typical reactions 
of the effector phase of sensitization. Nevertheless, grow-
ing evidence supports the essential role of pollen-derived 
components co-delivered with the allergens in the initia-
tion of allergic sensitization [114].

The immunomodulatory potential of the pollen matrix
Several studies suggested that the allergenic potential of 
pollen proteins depends on the context of their respec-
tive sources. In vitro, purified recombinant Bet v 1 (rBet 
v 1) could not induce DC maturation compared to a com-
plete aqueous birch pollen extract (BPE). In  vivo, BPE, 
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but not rBet v 1, was able to induce Th2 polarization and 
no differences were observed upon depletion of natural 
Bet v 1 from BPE [94]. These findings strongly support 
the view that pure Bet v 1 is a poor immunogen regard-
ing the activation of DCs and the polarization of Th2 
cells. We also showed recently that compared to the com-
plete Timothy grass pollen extract, recombinant Phl p 5 
(rPhl p 5) was unable to induce IL4-producing Th cells 
in a short adjuvant-free Th2 polarization in  vivo model 
[115]. Contrasting results have been reported for Amb a 

1, the major ragweed pollen allergen. One study showed 
that the complete ragweed pollen extract, but not puri-
fied natural Amb a 1, was able to induce a Th2-biased 
immune response in mice [116]. On the other hand, Wolf 
et  al. reported that purified natural Amb a 1 isoforms 
were able to induce high IgE titres in mice even in the 
absence of Alum as adjuvant [117]. It should be men-
tioned that different immunization routes (i.e. intranasal 
instillation and subcutaneous injections) were employed 
in these Amb a 1 studies. In summary, several purified 
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allergens were shown to lack inherent sensitizing poten-
tial. However, the respective pollen contexts (e.g. aqueous 
pollen extracts) empower them with their full allergenic 
potential. According to this hypothesis, sensitization 
to a given allergen might result from a pre-primed Th2 
micromilieu initiated by pollen-derived non-allergenic 
adjuvant components, a phenomenon described as col-
lateral Th2-priming [118, 119]. Yet, the reason for the 
high sensitization rates to major allergens such as Bet v 
1 remains unclear. It is possible that the amounts and sta-
bility of proteins are important requirements for a pollen 
protein to become a major allergen. In this respect, Bet v 
1 is the most abundant protein (10–30% of total proteins) 
in BPE [94] and its thermal- and proteolytic- stability 
shown to be modulated by intrinsic pollen compounds 
[120]. In keeping with this view, allergens would then 
serve as secondary Th2 targets, i.e. target for IgE antibod-
ies, thus determining the antigenic specificity of the aller-
gic inflammatory response.

Composition of pollen matrix: intrinsic and extrinsic 
compounds
Pollen allergens are embedded in a complex and het-
erogeneous matrix composed of a myriad of bioactive 
molecules that are co-delivered during the allergic sensi-
tization. The pollen matrix can be divided into two com-
partments, an intrinsic part consisting of compounds 
inherent to the pollen, such as proteins, metabolites, 
lipids, carbohydrates, and an extrinsic fraction, including 

viruses, aerosols and particles from air pollutants and a 
pollen-linked microbiome [52, 114, 121–126]. Together 
these compounds provide a specific context for the 
allergen, designated as the pollen matrix and proposed 
as a determinant of allergenicity and Th2 sensitization 
(Fig. 2).

Intrinsic compartment
Pollen grains are rich in lipids displaying immunomodu-
latory effects and contributing to the pathogenesis of pol-
len allergies [121]. Cypress pollen-derived phospholipids 
were shown to be presented by MHC-related molecules 
on DCs to T cells via CD1, an interaction causing T cell 
proliferation and secretion of IFN-γ and IL-4 in cypress-
sensitized individuals, but not in healthy controls [122, 
127, 128]. Contribution of invariant natural killer T 
(iNKT) cells in mediating the effects of pollen lipids was 
also described for olive and birch pollen in humans and 
in murine in vitro models, respectively [50, 127].

Several studies described the immunostimulatory 
activity of non-protein low-molecular weight compounds 
prepared from pollen extracts. These fractions enriched 
in various metabolites were able to activate innate immu-
nity signalling and preferentially induced a Th2-biased 
response (Table 2) [49, 121, 129, 130].

Pollen-associated lipid mediators (PALMs), classi-
fied into leukotriene-like molecules and phytopros-
tanes, are eicosanoid-like molecules involved in plant 
stress responses. PALMs have been identified in aqueous 

The pollen matrix

Proteins

Lipids

Metabolites

PALMs

Allergens
Proteases
Non-allergenic 
proteins and 
enzymes

Adenosine
Flavonoids

Microbiome
Bacteria
Fungi
Viruses

Endotoxins
Lipopeptides
Free RNA Exposure

  Allergic    Atopic

Intrinsic Extrinsic

O

OHO

OH

O

O

HO

OH

OH

O

O

OH

OH

OH

OH

OH

OH

Non-atopic

Allergic 
sensitization Tolerance

Immunological effects

Air pollutants Particle matter
Ozone
CO2
NO2

Other contributing
factors

AsymptomaticSymptomatic Asymptomatic

(Table 3)

(Table 2)

Fig. 2 The composition of the pollen matrix influencing the sensitizing potential of allergenic pollen sources. The intrinsic part consists of 
compounds inherent to the pollen and the extrinsic fraction, includes a prominent microbiome retaining diverse bacterial strains, viruses and 
fungi. Major immune stimulators can be proteins including allergens with intrinsic adjuvant activities, non‑allergenic proteases, but also lipids and 
metabolites such as PALMS, adenosine and flavonoids. Additionally, climate and exposure to air pollutants shape the composition of the pollen 
matrix. Details on the immunomodulatory activities of pollen matrix‑derived components as well as on the modulation of the matrix composition 
can be found in Tables 2 and 3. PALMs, pollen‑associated lipid mediators;  CO2, carbon dioxide;  NO2, nitrogen oxides
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extracts of various pollen sources were shown to attract 
innate immune cells and to inhibit Th1-differentiation 
by DCs [131]. Timothy grass- and birch pollen-derived 
PALMS were shown to attract and activate human neu-
trophils and eosinophils [132–134]. Upon LPS-stimu-
lation of human DCs, pollen-derived phytoprostane E1 
(PPE1) inhibited IL-12p70 production via blocking of 
NF‐κB and activation of PPAR‐γ, hence suppressing the 
Th1 response [51, 135, 136]. Further, the protein-free 
low-molecular weight fraction of ragweed pollen was 
reported to enhance IgE production by Th2-primed B 
cells, an effect probably attributable to PPE1 [137]. Gilles 
et  al. demonstrated that the low-molecular weight frac-
tion of aqueous pollen extracts induced the expression of 
Th2-associated notch ligands on DCs [95]. PPE1 was also 
shown to bind with high affinity to Bet v 1 and to inhibit 
endolysosomal cathepsin proteases, thus interfering with 
the antigen-processing machinery in APCs and modulat-
ing antigen presentation to T cells [120].

Adenosine has been identified in pollen as a metabolite 
and immunomodulator with dual properties. Adenosine 
from BPE was shown to inhibit the production of IL-
12p70 by DCs via cAMP signalling. In allogenic co-cul-
tures, BPE-treated DCs from non-atopic donors induced 
the priming of regulatory T cells. This effect, mediated by 
pollen-derived adenosine, was less efficient when the DCs 
in the co-cultures were derived from atopic donors [129]. 
In vivo, intranasal instillation of adenosine-depleted rag-
weed pollen extract led to a rapid secretion of Th2-asso-
ciated cytokines. However, adenosine-depleted pollen 
extract failed to induce the full allergic lung phenotype 
when administered to mice that had already been sensi-
tized to ragweed pollen beforehand, showing divergent 
effects of adenosine: protective during sensitization and 
pro-inflammatory during challenge. Adenosine-depleted 
ragweed pollen extract also lost the ability to induce neu-
trophil and eosinophil migration towards supernatants of 
bronchial epithelial cells in  vitro. Alone, pollen-derived 

adenosine lacked this ability, suggesting a general effect 
as cofactor [116]. Functional alteration of bronchial epi-
thelial barriers (ionic permeability and cytokine secre-
tion) was attributed to Timothy grass pollen-derived 
adenosine and to the flavonoid isorhamnetin. The latter 
also instructed activated epithelial cells to secrete IL-8, 
similarly to the complete pollen extract [138]. However, 
the significance of adenosine in allergic sensitization has 
been questioned by Mueller et al. who quantified adeno-
sine levels in various pollen extracts and concluded that 
the measured amounts too low to exert a physiological 
effect [139]. The discrepancy of these results might be 
explained by environmental factors influencing the aden-
osine content in pollen.

Pollen contain non-allergenic proteases, either intrinsic 
to the pollen or extrinsic derived from its microbiome. 
Proteases in allergenic sources have also been associated 
with the pathogenesis of inflammatory allergic diseases 
[52, 114, 140–142]. Pollen-derived proteases can degrade 
tight junctions and disrupt the airway epithelial barrier, 
thus facilitate antigen uptake by APCs [143, 144]. The 
critical role of pollen proteases has been documented in a 
murine model of asthma in which addition of exogenous 
proteases to inhaled ovalbumin was necessary to initiate 
type 2 allergic lung inflammation, whereas the antigen 
administered alone had no such effect [145].

Extrinsic compartment
Pollutants in ambient air, such as irritant gases and die-
sel exhaust particles, ozone, carbon dioxide and nitrogen 
oxides, do not only affect humans but also plants and 
their pollen in various ways (Table 3) [125, 146]. Pollut-
ants can influence the composition of the pollen micro-
biota, induce chemical modifications in allergens, act as 
adjuvant, damage the epithelial barrier, activate immune 
cells, and in this way trigger inflammation and promote 
Th2 polarization [124, 147, 148].

Table 3 Modulation of the pollen matrix composition and allergenicity by air pollutants

PALMs pollen-associated lipid mediators, SPT skin prick test

Plant family Plant species Increase in allergen expression 
level

Increased PALM release Increased 
reactivity 
in SPT

Tree Betulaceae White birch (Betula verrucosa) Ozone [151], air pollutants and bac‑
teria [48]

Traffic‑related air pollution [153], 
air pollutants & bacteria [48]

Ozone [151]

Platanaceae Oriental plane tree (Platanus orientalis) Traffic‑related air pollution [148]

Grass Poaceae Timothy grass (Phleum pratense) Traffic‑related air pollution [153] Traffic‑related air pollution [153]

Poaceae Rye grass (Lolium perenne) Ozone [149]

Weed Asteraceae Short ragweed (Ambrosia artemisii-
folia)

Ozone [150]

Asteraceae Mugwort (Artemisia vulgaris) Traffic‑related air pollution [153]
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In this regard, a correlation between exposure to 
atmospheric pollutants and the content of allergens as 
well as of immunostimulatory compounds in pollen was 
reported [149–151]. Pollen collected from plants grow-
ing near roads with heavy traffic and exposed to intense 
air pollution contained higher levels of PALMs, sug-
gesting a stronger immunostimulatory activity than pol-
len collected in rural meadow areas [152, 153]. Another 
study demonstrated a positive association between ambi-
ent ozone levels and Bet v 1 sensitization of susceptible 
individuals [151]. In contrast, the content of PALMs 
with structural and functional homology to mammalian 
prostaglandin  E2  (PGE2) was negatively correlated with 
ozone concentrations. These observations suggest that 
areas with low ozone levels and high concentration of 
 PGE2-like PALMs might facilitate sensitization by pro-
moting Th2 responses, whereas areas with high ozone 
levels and high allergen concentration might be more 
prone to induce allergic symptoms in already sensitized 
individuals. A positive correlation was recently observed 
between air pollutants and the microbial diversity of 
birch and Timothy grass pollen, which was further asso-
ciated with the content of allergen and PALMs.

Although the bacterial species involved in the immu-
nomodulatory effects discussed above have not been 
identified yet [48], the effect of the microbiota inhabit-
ing pollen deserves further investigation. Its composition 
is variable and specific for each pollen species [48, 154]. 
Besides intrinsic pollen-derived lipids, microbial lipids 
constitute a source of immunomodulators and enhanc-
ers of the sensitization process [121]. LPS deriving from 
gram-negative bacteria has been frequently discussed 
in the context of allergic sensitization [82, 84, 155, 156]. 
The presence of endotoxin derived from Pseudomonas 
and Pantoea in mugwort pollen extracts was suggested to 
be a critical factor for the development of airway aller-
gic inflammation in vivo. In contrast, other studies dem-
onstrated that although LPS acts as a strong adjuvant, it 
does not account for the full sensitizing activity of birch 
and ragweed pollen extracts [94, 157].

Gram-positive bacteria could also contribute to the 
extrinsic adjuvant activity of pollen. Supernatants of 
homogenized Bacillus cereus and B. subtilis found in high 
amounts in Timothy grass pollen was able to induce mat-
uration of DCs derived from grass pollen-allergic donors. 
A co-culture of autologous  CD4+ T cells with DCs pulsed 
with grass pollen extract plus supernatants of homog-
enized bacteria enhanced T cell proliferation, as well as 
secretion of type-2 and -17 cytokines, compared to DCs 
pulsed with grass pollen alone, thus, contributing to Th2- 
and Th17-mediated inflammation [126].

The influence of plant viral infection on the sensi-
tizing potential of pollen remains largely unknown. 

A small pilot study compared the size of skin wheals 
after skin-prick tests with Cocksfoot streak potyvirus 
(CSV)-infected and non-infected Cocksfoot grass pol-
len extracts [123]. The observed differences suggested 
that allergic individuals might be more prone to react to 
virus-infected pollen, which could have implications in 
allergy diagnosis and treatment.

The concept of allergen-specific immunotherapy 
(AIT) in the treatment of pollen allergies
AIT is the only available curative approach of allergic 
diseases addressing the underlying molecular and cellu-
lar mechanisms of the disease. It hereby relies on a con-
stant exposure to allergenic extracts (e.g. pollen extracts) 
making patients tolerant toward the allergen responsible 
for the occurrence of symptoms [158]. This induction of 
immune tolerance is facilitated by the immunosuppres-
sive function (direct interaction or release of anti-inflam-
matory cytokines) of regulatory T and B cells as well as by 
tolerogenic DCs [158, 159]. However, the latter two have 
hardly been investigated in context of pollen AIT yet. 
In the treatment of pollen allergy, AIT is currently per-
formed with pollen extracts that are applied either subcu-
taneously (SCIT) or sublingually (SLIT). Both treatment 
options result in an efficient relief of symptoms, although 
head-to-head SCIT versus SLIT comparative studies are 
still lacking. At present, the aforementioned treatment 
choice mostly depends on the patient´s personal prefer-
ence [160].

There is a clear difference between the United States 
and European countries regarding the standardization of 
allergen extracts as well as the usage of adjuvants (e.g. alu-
minium hydroxide, alum adsorption). In contrast to the 
US, where adjuvant-adsorbed pollen extracts are rarely 
used, the majority of European countries implemented 
SCIT products adsorbed to alum in their daily rou-
tine [161]. Adjuvants are required to facilitate an adap-
tive immune response. An additional beneficial effect by 
alum adsorption of antigens is the “depot effect”, resulting 
in a slow localized release of the antigens at the sites of 
administration and, thus, preventing systemic side effects 
such as anaphylaxis [162]. However, as reported herein, 
pollen extracts possess their own immunomodulatory 
efficacy making an adjuvant-free application equally pos-
sible. Although the evaluation of recombinant wild-type 
allergens in clinical trials is scarce, it is apparent they 
are less effective compared to complete pollen extracts 
implying the presence of adjuvant signals induce toler-
ance-favouring mechanisms [163].

A major drawback of current AIT products is the 
standardization methods of pollen extracts among phar-
maceutical companies and batch-to-batch variabil-
ity. Most extract-based AIT vaccines are standardized 
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toward the concentration of disease-dominating 
allergen(s), while missing out on the complex nature of 
extracts [161]. Facing these struggles, it is almost impos-
sible to draw accurate conclusions about the immuno-
reactivity of pollen extracts regarding the induction of 
immunotolerance as also reflected by the large variance 
of responders and non-responders to the treatment, and 
poor treatment compliance [164]. Other treatment-asso-
ciated disadvantages are, the limitation in sufficient bio-
markers predicting treatment efficacy, a long treatment 
duration and treatment-induced side effects such as de 
novo sensitizations to other/minor allergens [165, 166]. 
In order to overcome these conceptual obstacles it is of 
utmost importance to point out the necessity of improv-
ing current AIT procedures and to provide a sufficient 
AIT alternative not only able to expedite a more efficient 
induction of immunotolerance but also a perpetual one.

In light of the present review, and since TLSP, IL-33, 
and to some extent also IL-25 seem to play important 
roles in the maintenance of Th2 responses, the concomi-
tantly targeting of alarmins or respective signalling path-
ways may represent an attractive alternative/addition to 
current AIT protocols [74, 76, 81]. In addition, the char-
acterization of tolerance-inducing pollen compounds 
could provide further therapeutic tools to ameliorate AIT 
efficacy.

Conclusion
Pollen sensitization results from complex interactions 
between pollen-derived adjuvants co-delivered with 
allergens and the innate immune network. These pol-
len-derived adjuvants are thought to contribute to the 
generation of a pro-inflammatory microenvironment 
at exposure sites that primes DCs to favour Th2 polari-
zation in the draining lymph nodes. Due to a multitude 
of immunological effects reported for various pollen 
sources upon interaction with the host cells, it seems 
reasonable to suggest that initiation of sensitization by 
various pollen occurs via distinct molecular mechanisms, 
probably also involving pollen species-specific immune 
adjuvants. The identity of these pollen-derived factors 
triggering the initial signals for Th2 polarization remains 
largely unknown. Thus, their identification and evalua-
tion of their role in the initiation of allergic sensitization 
should to be addressed in future studies. Such findings 
will provide mechanistic insights into Th2 polarization in 
allergic sensitization, and pave the way for novel preven-
tive and therapeutic strategies for an efficient manage-
ment of pollen allergies.
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