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Abstract 

Skin microdialysis (SMD) is a versatile sampling technique that can be used to recover soluble endogenous and exog‑
enous molecules from the extracellular compartment of human skin. Due to its minimally invasive character, SMD can 
be applied in both clinical and preclinical settings. Despite being available since the 1990s, the technique has still not 
reached its full potential use as a tool to explore pathophysiological mechanisms of allergic and inflammatory reac‑
tions in the skin. Therefore, an EAACI Task Force on SMD was formed to disseminate knowledge about the technique 
and its many applications. This position paper from the task force provides an overview of the current use of SMD 
in the investigation of the pathogenesis of chronic inflammatory skin diseases, such as atopic dermatitis, chronic 
urticaria, psoriasis, and in studies of cutaneous events during type 1 hypersensitivity reactions. Furthermore, this paper 
covers drug hypersensitivity, UVB‑induced‑ and neurogenic inflammation, and drug penetration investigated by SMD. 
The aim of this paper is to encourage the use of SMD and to make the technique easily accessible by providing an 
overview of methodology and applications, supported by standardized operating procedures for SMD in vivo and 
ex vivo.
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What is skin microdialysis?
To perform skin microdialysis (SMD) thin tubular dialy-
sis membranes are inserted into the dermis or the sub-
cutis and perfused at a low speed with a physiological 
solution (the perfusate) (Fig.  1). Endogenous or exog-
enous molecules soluble in the extracellular fluid diffuse 
into the tubular microdialysis membrane and are col-
lected in small vials for analysis. The duration and timing 
of the collected dialysate samples allows kinetic evalua-
tion of the events occurring in the tissue.

In broad terms, microdialysis has been applied in 
two scenarios. The first and in fact the original use of 
the technique aimed to gain continual, real-time data 

reflecting target tissue status as an alternative to repeated 
blood sampling. This monitoring situation usually, 
because of the insertion technique used, involved place-
ment of probes in the subcutaneous layer of the skin. It 
allowed early detection of a metabolic deterioration in, 
for instance, an intensive care patient with sepsis. With 
time, the technique began to be used for specific stud-
ies elucidating the role of the actual subcutaneous tis-
sue [1]. Specific placement of probes into the dermal 
layer opened the way for studies of inflammatory events 
most prominently driven by that part of the skin. SMD 
has also been applied in drug discovery and pharmacoki-
netic/pharmacodynamic (PK/PD) studies (for reviews 
see [2–4]) and in the study of percutaneous penetration 
of potentially harmful exogenous agents from the envi-
ronment [5]. SMD has the advantage over other tissue 
sampling techniques of being minimally invasive, and it 
is well tolerated by human volunteers. As a consequence 
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it has been widely used to study normal, diseased and 
experimentally perturbed skin function [6–8]. In the 
25 years since the introduction of the technique, over 800 
papers have been published on SMD.

The purpose of this paper is to review how the use 
of SMD has helped to improve our understanding of 
chronic inflammatory skin conditions and skin inflam-
mation in general. We also hope to encourage the use of 
SMD for investigating the many remaining unanswered 
questions on the mechanisms of cutaneous inflammation 
especially in the field of skin allergy and skin hypersensi-
tivity reactions.

How SMD has helped us to understand skin 
inflammation and skin inflammatory disorders
What SMD taught us about cutaneous type 1 
hypersensitivity reactions
The wheal and flare response to dermal provocation with 
allergen is a well-established model of type 1 hypersen-
sitivity. SMD is an ideal technique with which to inves-
tigate the mechanisms of this response by identification 
of the inflammatory mediators generated in vivo in real-
time [9–11].

The mechanism of the early phase response has been 
investigated by insertion of microdialysis probes into 
different areas of the wheal and flare [12]. The results 
showed that histamine was released in the wheal but not 
the flare. Further studies [13] showed that the neurogenic 
flare was mediated primarily by calcitonin gene related 
peptide (CGRP).

The use of scanning laser Doppler imaging in combi-
nation with SMD has allowed the investigation of quan-
titative real-time temporal and spatial changes in blood 
flow in response to other potential inflammatory media-
tors in the skin. For example, the  H1-antihistamines ceti-
rizine and loratadine were shown to inhibit wheal and 
flare responses to bradykinin as well as histamine [14]. 
The obvious conclusion from this study was that brady-
kinin induces histamine release, particularly as cetirizine 
was shown not to interact with either the  B1 or  B2 brady-
kinin receptors [15]. However, microdialysis showed that 
this was not the case in most individuals [14]. Instead, the 
results of the use of SMD suggest that there is co-opera-
tivity between bradykinin and histamine  H1-receptors in 
the dermis. A similar scenario has been found with plate-
let activating factor [16].

In a further study [7], the cytokine response to dermal 
allergen provocation was studied in 11 allergic individu-
als over a period of 6  h using two linear SMD probes 
inserted 1  cm apart in the volar skin of the forearm. 
Allergen injection caused a significant rise in interleukin 
(IL)-6 within 30 min. However, increased tumor necrosis 
factor (TNF)-α levels were found in only 3 individuals at 
this time. At both 3 and 6 h, significantly elevated levels 
of IL-1α, IL-1β, IL-6 and IL-8 were found. Interestingly, 
IL-6 and IL-8 were also raised at the site 1 cm from the 
allergen injection. In contrast, adhesion molecule expres-
sion and leukocyte infiltration were elevated only at the 
allergen injection site, suggesting a complex relationship 
between cytokine generation and cellular events in aller-
gic inflammation. A further fascinating outcome of this 
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Fig. 1 Schematic representation of SMD (here with a linear microdialysis probe). The membrane is inserted into the tissue from which it allows 
recovery of soluble molecules (in red) when perfused using a microperfusion pump. © Niels Peter Hell Knudsen
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study was that, when looked at individually, the cytokine 
profile of every person was different illustrating the need 
for further human SMD studies to unravel the complexi-
ties of immunological skin responses.

How SMD has helped our understanding of atopic 
dermatitis
The particular strength of SMD in studies of atopic 
dermatitis (AD) is combining analysis of local media-
tor concentrations with the assessment of sensory 
perception. Intra-probe delivery of mast cell-degran-
ulating codeine provokes local wheal and C-fiber 
activation resulting in an axon reflex erythema and 
histamine-independent itch in patients with AD [17]. 
This response is mediated probably via increased mast 
cell tryptase activating nociceptors via proteinase-acti-
vated receptors [17, 18]. Higher iron and ascorbic acid 
as wells as prostanoid levels were found in the skin of 
AD patients [19, 20] whereas no significant increase 
in nerve growth factor was detected [21]. Intra-probe 
delivery of prostaglandin (PG)E2 [22] and low pH per-
fusate [23] were successfully used to show the sensi-
tized neuronal itch response to normally painful stimuli 
in patients with AD.

In pain research, SMD has been used to assess the 
link between local mediator release and neuronal sen-
sitization in more detail [24, 25]. Thus, using improved 
analytical methods, SMD will successfully identify 
clinically relevant local mediator concentrations in AD 
such as large signaling peptides, local hormones and 
lipids.

Insights from SMD studies on psoriasis
Cytokine profiles of SMD-derived samples analyzed by 
bead-based multiplex immunoassays have been used 
to monitor changes in the micromilieu of the skin of 
patients with psoriasis for up to 24 h. Post-equilibration 
levels at 17–24  h showed that granulocyte-macrophage 
colony-stimulating factor (GM-CSF) and TNF-α levels 
were elevated in psoriasis compared with healthy sub-
jects [26]. In another study, levels for IL-2, IL-6, IL-18 
and IL-23 were elevated in dialysates of lesional versus 
non-lesional skin prior to therapy. Clinical improvement 
under 12 weeks of continuous oral therapy with fumaric 
acid esters paralleled the reduced concentrations of these 
cytokines in dialysates [27]. The same group reported 
that IL-1β was elevated in dialysates from psoriasis 
plaques compared with non-lesional skin, and levels were 
reduced under successful anti-psoriatic fumaric acid 
esters therapy [28]. A pharmacokinetic profile was elab-
orated in patients with psoriasis using SMD comparing 
lesional and non-lesional skin with intravenous micro-
dialysis after administration of oral or subcutaneous 

methotrexate. Methotrexate bioavailability was higher 
in psoriasis plaques than in non-lesional skin but highly 
individual [29]. Several SMD studies analyzed histamine 
release examined by high-performance liquid chroma-
tography (HPLC) in psoriatic skin and showed a ten-
fold increase in lesional compared to non-lesional skin 
[30]. Ranitidine was able to reduce histamine release in 
lesional skin [31].

Chronic urticaria: what did we learn from SMD studies?
SMD is ideally suited for the investigation of inducible 
urticaria, because its signs and symptoms (itchy wheals 
and angioedema) can be induced by skin provocation 
with relevant triggers. Most SMD studies have investi-
gated cold urticaria, first in 1995 when histamine release 
was demonstrated in wheals elicited by an ice cube test 
in cold urticaria patients [32]. Nuutinen et  al. reported 
similar results [33] but failed to demonstrate leukotriene 
 C4  (LTC4) release. They concluded that the absence of 
 LTC4 could be due to the activation of skin mast cells by 
an IgE-independent mechanism. Taskila et al. also failed 
to detect  LTC4 by SMD in volunteers challenged with 
stinging nettles [34]. In contrast, Horsmanheimo et  al., 
also using SMD, measured increase of  LTC4 in volunteers 
after controlled challenge with mosquito bites [35].

SMD has also been used to monitor the therapeutic 
effect of desensitization or antihistamines in cold urti-
caria patients by measuring histamine or cytokine release 
in response to cold provocation. For example, Tannert 
et  al. investigated cold desensitization in cold urticaria 
patients [36] and found, before desensitization, histamine 
release by SMD in wheals elicited by cold challenge but 
no histamine release upon a subsequent codeine skin 
test. After successful desensitization, no histamine was 
released at cold-exposed skin sites while codeine chal-
lenge resulted in histamine release indicating that the 
mechanism of cold desensitization is unlikely to be due 
to depletion of histamine in skin mast cells. In a study by 
Krause et al., the beneficial effect of using increased doses 
of the non-sedating antihistamine bilastine in patients 
with cold urticaria was shown [37]. SMD in cold chal-
lenged patients with cold urticaria treated with increased 
doses of bilastine showed significantly reduced late phase 
histamine and proinflammatory cytokine (IL-6 and IL-8) 
release.

The use of SMD in studies of drug hypersensitivity 
and ultraviolet B (UVB)‑induced skin responses
Skin provocation testing with drugs or UVB radiation 
allows for assessing skin responses by SMD, for exam-
ple to sample the real-time release of biomarkers. For 
drug hypersensitivity studies, the skin can be challenged 
directly by performing skin tests with the drug close to 
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the probe to elicit a wheal that develops across the probe. 
Experimentally, the impact of treatment on mediator 
release can be studied and compared to placebo treat-
ment. While SMD is well suited for assessing drugs 
that elicit immediate reactions in the skin, delayed drug 
reactions mediated by T cell activation are more chal-
lenging to study by SMD. Nevertheless, SMD is promis-
ing, because mediators of different sizes can be sampled 
by use of probes with varying molecular weight cut-off 
(MWCO). So far, SMD has been used to a limited extent 
in the investigation of drug hypersensitivity. In one study, 
SMD in penicillin allergic patients demonstrated that 
histamine was only released in the minority of positive 
intracutaneous tests with penicillin [38].

SMD has been used in several studies of the release of 
prostanoids and cytokines following UVB radiation [24, 
39–42]. In one study, SMD was performed 24  h before 
and 24 h after UVB challenge, and dialysates were sam-
pled at 8-h intervals [39]. Probe placement 24 h prior to 
radiation induced an unspecific proinflammatory, trau-
matic response driven by IL-6, IL-8, TNF-α and IL-1β, 
whereas UVB radiation showed a mixed  TH1/TH2-related 
cytokine profile, with a late IL-4 and IL-10 dominant 
 TH2-driven shift. A more recent SMD study elaborated a 
kinetic profile for inflammation markers 16  h prior and 
48 h post radiation [41]. Dialysates were collected at 4-h 
intervals and analyzed for 5- and 8-iso-PGF2α, 9α,11α-
PGF2α and  PGE2 using gas-chromatography/mass-spec-
trometry and for IL-1β, IL-2, IL-3, IL-4, IL-5, IL-6, IL-8, 
IL-10, TNF-α, Fas ligand (FasL), interferon-γ-induced 
protein 10 (IP-10), monocyte chemoattractant protein 1 
(MCP-1), regulated on activation normal T cell expressed 
and secreted (RANTES), eotaxin, and GM-CSF using 
a multiplex cytometric-bead-array. As a result, 3 peaks 
with synchronic release of  TH1-directed inflammatory 
cytokines and prostanoids could be detected post-UVB 
radiation: an early phase (4–12 h), an intermediate phase 
(16–24  h) and a late phase (32–40  h). A  TH2-directed 
cytokine response was detectable during intermedi-
ate and late phases. This study indicated that the release 
of cytokines and prostanoids is synchronized and that 
a slow  TH1-to-TH2 shift occurs up to 40  h after UVB 
radiation.

The use of SMD to study neurogenic inflammation
The activation of peptidergic nociceptors in the skin 
causes the release of neuropeptides that dilate precapil-
lary arterioles (calcitonin-gene related peptide, CGRP) 
and increase leakiness of post-capillary venules (sub-
stance P, SP), i.e. neurogenic inflammation. SMD has 
been used to apply neuropeptides and assess dose–
response functions for neurogenic inflammation and 
itch including studies that suggest a role of nitric oxide 

in neurogenic vasodilation in human skin [43]. While 
histamine release following nociceptor activation has 
been shown in rodent skin [44], this is not the case in 
humans within the axon reflex flare area [45]. SP-release 
in humans is less pronounced as compared with rodents 
and there is no neurogenic protein extravasation in 
healthy volunteers [46, 47]. However, there are chronic 
pain conditions in which SP-upregulation might enable 
neurogenic protein extravasation also in humans [48] 
even in the non-affected limb [49, 50]. More tardy neu-
ropeptide degradation increases neurogenic vasodilation 
[51] and might be of clinical importance in chronic pain 
conditions.

How SMD is used to study drug penetration 
and distribution
Following on the use of SMD to investigate metabolic 
events in the human body, the study of percutaneous 
penetration of exogenous substances has been argu-
ably the first dermatological area studied by microdi-
alysis [52]. Several ways of delivery to the skin of drugs 
and other agents of interest have been studied [5, 53, 
54], and SMD has also been used in animal models and 
ex  vivo models. Topics for discussion and development 
have clustered around membrane permeability and 
the “stickiness” of molecules, the analytical sensitivity 
required and issues of lipophilicity and tissue binding of 
individual target molecules. Several useful reviews are 
available illustrating important, generic methodological 
issues (e.g. [2, 55–59]). Attempts to fulfill the develop-
mental and regulatory needs concerning bioavailability 
and bioequivalence of topical pharmaceuticals have, over 
the last two decades, involved the use of either tape 
stripping (so called DPK—dermato-pharmaco-kinetic 
modelling) or SMD, with the current emphasis on the 
latter. In  vivo protocols involving SMD have been sug-
gested with numbers of subjects (and thus costs) that 
are far lower than the traditional clinical trial methodol-
ogy, which has previously been necessary to demonstrate 
bioequivalence of a new topical pharmaceutical product. 
More recently, the open flow variant of SMD involving 
outer membranes that are fenestrated rather than being 
reliant on pores, has been the subject of intensive devel-
opment of technique, application and data interpretation 
[60, 61]. The developments have been necessary in order 
to standardize potential sources of variability in data such 
as blood flow and other interindividual variability. Since 
both standard SMD and open flow microperfusion have 
been used to demonstrate the chronology of expression 
of inflammatory and other tissue indicators, the integra-
tion of pharmacokinetic and pharmacological data seems 
entirely possible and logical.
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The study of penetration of harmful agents into the 
skin is also possible. The microdosing nature of micro-
dialysis (low concentrations and small areas of skin for 
provocation rather than larger areas of skin or systemic 
administration) is an important ethical advantage for 
studies on e.g. percutaneous penetration of pesticides or 
similar potentially toxic agents. In extension, SMD may 
have uses in studies of dose (dermal delivery) of allergens 
and even of their fate (by metabolism) in living skin.

SMD techniques and methodology
In vivo SMD
There is an extensive and wide ranging technical litera-
ture on SMD that focusses on key methodological con-
siderations. The most important of these relate to choice 
of skin site, probe selection and insertion, and to probe 
perfusate and perfusion rate [62].

The most frequently used site for in  vivo SMD is the 
volar forearm [5, 16, 63–65] (Fig.  2), although other 
sites have been used to study regional variations in skin 
responses [66], pruritic responses (e.g. in the scalp [67]), 
and in the assessment of skin graft and flap viability 
[68]. When using the forearm, usually only one arm is 
used at a time to allow the participant some freedom of 
movement.

Probe selection is driven by the physicochemical 
properties of the analyte recovered; its size, charge and 
hydrophilicity determining the MWCO of the dialysis 
membrane as well as the construction of the probe itself. 
Linear probe membranes have a smaller diameter than 
the larger concentric probes, which are typically used for 
systemic drug delivery studies. As a result, narrow inser-
tion needles are used for linear probes, which cause less 
insertion trauma. Insertion of concentric probes, on the 
other hand, requires only one penetration of the skin.

It is important to acknowledge that most, but not all, 
in  vivo human SMD studies use local anesthetic. This 
has the advantage of reducing the pain of probe insertion 
(and encouraging study participation) and limiting the 
wounding response. However, its long action may con-
found studies in which changes in local blood flow and/or 
neurogenic responses are of interest or where they may 
influence the interpretation of pharmacological studies.

There are very few reports about the time necessary for 
recovery from trauma associated with probe insertion 
or about the specific endogenous compounds generated 
as a result of this trauma. A 2 h recovery period is usu-
ally adopted to allow local blood flow to return to normal 
(indicating the resolution of the immediate erythematous 
response to trauma) [69, 70] or a normal flare response 
to histamine to be re-established (indicating the recovery 
from the local anesthetic) [71].

Selection of perfusion medium (usually isotonic 
saline without or with additives to aid analyte recov-
ery) and rate of perfusion are driven by the nature of 
the solute to be recovered and by the study aims (see 
Table  1). Volume requirements of the assay platform 
are also highly influential in determining probe perfu-
sion rates and dialysate collection protocols. The recent 
development of microfluidic platforms for the continu-
ous on-line sampling of dialysate may go some way 
towards addressing this in future [72, 73].

The members of the EAACI Task Force on SMD have 
developed a standard operating procedure (SOP) for 
performing in  vivo SMD studies, which is provided in 
the online supplement of this report (see In vivo SMD 
SOP, Additional file 1).

Ex vivo SMD
The application of SMD in studies of human ex  vivo 
skin was first described in 1996 by Petersen et  al. 
using the technique to measure release of histamine 
from skin-resident mast cells in response to intrader-
mal injection of chemokines [74]. Since then, excised 
human skin has been studied by microdialysis to meas-
ure other endogenous molecules [75] and for investiga-
tions of cutaneous drug penetration [76–80]. Dermal 
inflammatory reactions have been studied by SMD in 
animal ex  vivo skin [81], but this application has not 
yet been described for human skin specimens. Hence, 
human ex  vivo skin has an unused potential in trans-
lational studies, as it facilitates investigations of pre-
clinical compounds with respect to their cutaneous 
effects and metabolism, while reflecting the natural 
biological variation in contrast to studies relying on 
cell lines or skin substitutes. However, it is important 
to acknowledge that the lack of blood flow and inner-
vation hampers studies of systemic influence on cuta-
neous responses. Furthermore, clearance of molecules 
from the tissue is also altered ex vivo, and the duration 
of experiments is limited by the viability of skin speci-
mens. Similar to SMD performed in  vivo, an ex  vivo 
setup must be carefully optimized based on the target 
analyte(s) (see Table 1). A consensus protocol for per-
forming ex vivo SMD studies, developed by the EAACI 
Task Force on SMD members, is provided in the online 
supplement of this report (see Ex vivo SMD SOP, Addi-
tional file 2).

The strengths and limitations of SMD
SMD is a well validated and safe technique that has been 
extensively used to sample intrinsic dermal chemicals, 
such as mediators of inflammation, from the skin, and 
to deliver extrinsic substances, such as drugs, to the 
skin. Microdialysis has made major contributions to our 
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Fig. 2 An example of the SMD procedure. a Priming of microdialysis probes prior to insertion, b topical application of local anesthesia, c 
intradermal insertion of guide cannulas, d introduction of probes through the guide cannulas, e SMD setting and basal sampling, f skin challenge, 
g skin site before challenge, h wheal and flare reaction in response to intradermal challenge, i collection of dialysates—here in microtubes, j 
alternative collection of dialysates—here directly into sampling wells. Please refer to the SOPs (in vivo SMD SOP and ex vivo SMD SOP, provided as 
Additional files 1 and 2, respectively) for a detailed description of the SMD procedure. Pictures are reproduced with kind permission from Line Kring 
Tannert and Marcus Maurer
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understanding of dermal inflammatory disease and has 
driven innovative thinking in PK/PD drug studies. Still, 
there are limitations related to the technique that must 
be acknowledged and considered before using SMD to 
study inflammation and allergy. Table  2 summarizes 
some of the technique’s strengths and limitations. 

Ethical considerations in SMD studies
The use of SMD in humans has been permitted through 
the approval of microdialysis probes by the US Food and 
Drug Administration (FDA) and the European Union 
Conformite Europeene (CE) [82].

A significant benefit of SMD is its minimally invasive 
nature compared to alternative tissue sampling tech-
niques. Still, whenever research is carried out on humans 
or human tissue, potential ethical issues must be consid-
ered. The ethical requirements related to the use of SMD 
depend on the setting in which the technique is applied. 
In vivo studies are always subject to ethical approval from 
local Ethics Committees (in accordance with the Declara-
tion of Helsinki [83]). Whether the sourcing and use of 
human ex vivo skin for research purposes should also be 
approved by an ethical committee might be a question 
of the anonymity status of the donor. Acquisition of fully 
anonymized tissue may in some countries be exempt 
from ethical approval, however, with the entry into 
force of the European General Data Protection Regula-
tion (GDPR) the true anonymity of the donor might be 
brought into question.

It is advisable to contact local ethical authorities to 
clarify the need for ethical approval of ex vivo SMD stud-
ies and to obtain informed consent from skin donors.

Outlook: future applications of SMD
SMD has great potential to become a standard and 
routinely used technique not only in experimental der-
matology and allergology but also in the pharmaceu-
tical and cosmetic industry. It provides quantifiable 
data of the mediators involved in the inflammatory 
response in  situ. SMD has already been successfully 
applied in studies of inflammatory skin conditions 
including immediate hypersensitivity, urticaria, atopic 
dermatitis and drug hypersensitivity. Other skin dis-
eases for which SMD can help to better characterize 
pathogenic mechanisms include bullous diseases, mas-
tocytosis, autoinflammatory disorders, and allergic 
contact dermatitis.

As SMD can be performed in vivo as well as ex vivo, 
it can help to replace artificial skin models and animal 
studies to perform skin penetration studies in drug 
development. Although SMD is minimally invasive it 
must always be performed following ethical require-
ments in human research. The combination of micro-
dialysis with advanced imaging techniques such as 
confocal microscopy or life imaging of the skin in 3D 
[84] may offer new perspectives. Clinical studies may 
benefit from SMD as it allows for in  situ monitoring 
of molecules with a short in vivo half live (for example 

Table 2 Strengths and  limitations of  SMD for  the  study of  inflammation and  allergy in  the  skin (see text for  further 
information and references)

Strengths Limitations

• Can be used with equal efficacy in both healthy and diseased skin
• Allows dynamic, real‑time assessment of intercellular messengers
• Provides objective information on signaling pathways between resident 

inflammatory cells, sensory nerves and the vasculature
• Used to explore the temporal and spatial variations in mediator or 

metabolic profiles
• Probes with different MWCO allow the recovery of small molecules (e.g. 

histamine) away from metabolic enzymes and the recovery of larger 
molecules (e.g. cytokines and neuropeptides)

• Use of low perfusion rates and/or the addition of colloid or lipid 
emulsions to the probe perfusate enhances solute recovery and limit 
hydrostatic fluid loss

• Can be used in conjunction with other techniques, such as laser Doppler 
blood flux imaging and/or tissue histology in studies of dermal inflam‑
matory and allergic reactions

• Probe insertion is easy for the physician and relatively pain free, particu‑
larly when inserted under local anesthetic

• Probes may be left in place for up to several days
• Probes leave no scarring
• Analysis platforms are continually improving e.g. development of micro‑

fluidic platforms for continuous on‑line assay of dialysates

• Introduction of a microdialysis probe into the skin is a (minimally) invasive 
procedure necessitating appropriate controls in order to assess whether 
particular molecules are truly related to the disease state under investiga‑
tion or have been generated as part of the tissue response to probe 
implantation

• Despite application of local anesthetic, the insertion of microdialysis 
probes may be associated with mild pain

• Diffusion of chemicals in the skin, particularly large molecules, is very 
limited. Consequently, maximum probe perfusion rates need to be low 
(0.1–5 µl/min)

• Small recovery volumes and low concentrations of recovered chemicals 
make the use of assays with an appropriate sensitivity an absolute neces‑
sity

• Microdialysis recovery of high‑molecular‑mass substances, such as 
cytokines and neuropeptides, has proved particularly problematic

• Reduced recovery due to reduced solute bioavailability within the tissue 
space or to the adherence of bioactive molecules onto the material of the 
implanted probe

• Long‑term studies require the use of portable pumps, which may affect 
the ability of study participants to move freely depending on the dura‑
tion and the anatomical site

• Experienced personnel are required for optimal results (e.g. to insert 
probes at a consistent depth)
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bradykinin) or mediators that are produced only locally 
and/or in low amounts meaning that changes may not 
result in noticeable alterations in plasma/serum levels. 
SMD offers the possibility to extract these mediators 
from the site where they are produced.

In addition to the recovery of mediators from 
the skin, SMD probes can be used to administer 
drugs locally and monitor cutaneous responses [6]. 
SMD could be applied in studies that involve spe-
cial excipients to deliver active molecules into dif-
ferent layers of the skin such as transdermal delivery 
systems (laser-assisted drug delivery or micro needle 
patches), nanoparticles or the bicosome technology 
[78, 85]. Microdialysis is not restricted to the skin. 
Other tissues such as the heart, liver, embryonic tis-
sue, brain or muscles have been successfully studied by 
microdialysis.

Current efforts to improve SMD are focused on 
making this technique more precise and easier to use 
and more sensitive. There is a need for a broad spec-
trum of probes and for portable syringe pumps that 
allow for long-term studies over several days without 
hospitalization. Advances in miniaturization of pumps 
and in microfluidics-based collection and analysis will 
make it even more convenient for the tested subject, 
particularly in extended sampling studies. Technologi-
cal advances will help to improve detection thresholds 
and thus allow for the detection of trace amounts in 
even lower volumes [72, 73].

SMD is a valuable technology for research in derma-
tological allergology and beyond, and awareness of and 
further improvements in SMD will increase its use and 
utility in experimental and clinical studies.

Additional files

Additional file 1. In vivo SMD SOP. A standard operating procedure 
(SOP) for sampling of soluble molecules from human skin in vivo using 
microdialysis—a protocol from the EAACI Task Force on Skin Microdialysis.

Additional file 2. Ex vivo SMD SOP. A standard operating procedure 
(SOP) for sampling of soluble molecules from human skin ex vivo using 
microdialysis—a protocol from the EAACI Task Force on Skin Microdialysis.
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