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Abstract 

Background:  Interleukin(IL)-25, IL-33, and thymic stromal lymphopoietin (TSLP) underlie the crosstalk between 
epithelial cells and dendritic cells (DCs) during the development of Th2 responses. This study aimed to measure the 
expressions of IL-17RB, ST2 and TSLPR, receptor of IL-25, IL-33, and TSLP respectively, on myeloid DCs in nasal polyps 
(NP) and evaluate their association with local Th2 inflammation and disease severity in patients with NP.

Methods:  Samples were collected from 30 NP patients and 16 control subjects recruited prospectively. The mRNA 
expression of cytokines, including TSLP, IL-25 and IL-33, as well as interferon (IFN)-γ, IL-4, IL-5, IL-13 and IL-17A in NP 
and control tissues was examined by qualitative polymerase chain reaction (qPCR). The expression of IL-17RB, ST2 and 
TSLPR as well as other surface markers on myeloid DCs (mDCs) was examined by flow cytometry.

Results:  Increased numbers of total and activated mDCs were found in NP patients. mDCs demonstrated signifi‑
cantly higher expression of IL-17RB, ST2 and TSLPR than those in control tissues. The activated mDCs exhibited up-
regulations of OX40L and ICOSL, but down-regulation of PDL1 in NP. Moreover, the IL-17RB, ST2 and TSLPR levels on 
mDCs were positively correlated with IL-25, IL-33 and TSLP mRNA levels, respectively, in NP. Furthermore, IL-17RB and 
ST2 expressions on mDCs were correlated with the IL-5 mRNA level as well as eosinophil number in NP. Importantly, 
the IL-17RB expression on mDCs and the OX40L expression on activated mDCs in NP were positively correlated with 
CT score and total nasal symptom score.

Conclusions:  Increased expressions of IL-17RB and ST2 on mDCs are associated with enhanced local Th2 inflam‑
mation in NP, suggesting that mDCs might play a role in IL-25- and IL-33-induced type 2 responses and eosinophilic 
inflammation in NP.
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Introduction
Chronic rhinosinusitis (CRS), affecting 14% of adults 
in the United States and 8% in China [1, 2], is a chronic 
mucosal inflammation mediated by innate and adap-
tive immune cells and mediators in nasal sinus. CRS is 
typically classified into two types of clinical phenotypes: 
chronic rhinosinusitis without nasal polyps (CRSsNP) 
and chronic rhinosinusitis with nasal polyps (CRSwNP) 
[1]. Although emerging evidences have indicated that 
different regions of the world might have different endo-
types of CRS [3–6], a T helper (Th) 2-predominant 
eosinophilic endotype in NP has been well documented 
in the western world [3, 7–9], and notably has increased 
over past 10 years in oriental countries, such as Thailand 
[10] and Korea [11]. However, the cellular and molecu-
lar mechanisms driving the Th2-predominant immune 
response in NP remain unclear.

With potent antigen presenting capacity, dendritic cells 
(DCs) are a heterogeneous population of cells, consisting 
of multiple subtypes. It is clear now that different DC sub-
sets perform different tasks. For instance, some subsets of 
DCs are better at cross-presentation of antigen to CD8 T 
cells on major histocompatibility complex (MHC)- I mol-
ecules and others better at presenting endocytosed anti-
gen to CD4 T cells on MHC-II molecules [12, 13]. On the 
other hand, DCs can be divided into functional subsets 
according to their polarizing function on naïve T cells, 
such as a Th1-skewing subset and a Th2- skewing subset, 
which usually are both differentiated from myeloid DCs 
(mDCs) [14]. In NP, it has been reported that mDCs are 
increased in NP tissues [15, 16], and two distinct DC sub-
sets, OX40L/PDL1+ DCs with Th2-cell-priming ability 
and low OX40L/PDL1-expressing DCs with Th1/17-cell-
inducing ability, are associated with forming eosinophilic 
and non-eosinophilic endotype of NP respectively [17], 
indicating an important role DCs play in the modulation 
of T cell response in NP. However, the molecular fac-
tors in regulating functional DC subsets to induce Th2 
inflammation in NP have not been fully understood.

Thymic stromal lymphopoietin (TSLP), IL-25, and 
IL-33 are three cytokines predominantly produced 
by epithelial cells at mucosal surfaces in response to a 
wide range of environmental stimuli, and their expres-
sion during type 2 diseases, including NP, in humans 
has been widely documented [18–26]. It is now evident 
that these cytokines play an important role in initiat-
ing type 2 immunity in mammals by activating resident 
mucosal group 2 innate lymphoid cells (ILC2s) to pro-
duce Th2-type cytokines (IL-5 and IL-13) and skewing 
CD4+ T cells toward Th2 differentiation [27]. Further-
more, accumulating evidence show that these cytokines 
can also activate DCs to induce Th2-type immune 
responses. TSLP induces DC activation in nasal mucosa 

and enhances their capacity to initiate Th2 responses 
[28]. In a mouse model of house dust mite-induced air-
way inflammation, IL-25 was shown to promote Th2 and 
Th9 inflammation in lungs by targeting DCs [29]. Upon 
IL-33 exposure, DCs exhibited increased expression of 
CD40 and OX40 ligand (OX40L) and became very potent 
at inducing Th2 responses [30]. In addition, we recently 
reported that mDCs in peripheral blood mononuclear 
cells (PBMCs) in atopic subjects expressed higher lev-
els of IL-17RB (IL-25 receptor), ST2 (IL-33 receptor) 
and TSLPR (TSLP receptor) than those of non-atopic 
subjects [31]. Of note, DCs generated from peripheral 
blood monocytes of atopic subjects with GM-CSF and 
IL-4 in vitro also expressed higher level of IL-17RB and 
could enhance a Th2-type response, suggesting that 
DCs expressing IL-17RB might be a Th2-skewing subset 
[31]. However, whether mDCs in NP have similar recep-
tor expression patterns as those seen in atopic subjects 
remains unknown.

The aim of this study was to explore the phenotypic 
characteristics of mDCs, especially the expression of IL-
17RB, ST2 and TSLPR, and their potential contribution 
to the Th2 inflammation and disease severity in NP.

Materials and methods
Subjects
The study was approved by the Ethics Committee of the 
First Affiliated Hospital, Sun Yat-sen University, and con-
ducted with written informed consent from each patient. 
All subjects were prospectively recruited at the First 
Affiliated Hospital of Sun Yat-sen University in Guang-
zhou. The inclusion criteria for patients with NP were 
diagnosis of NP, which was made based on the European 
Position Paper on Rhinosinusitis and Nasal Polyps 2012 
guidelines [1], and bilateral NP. The inclusion criteria for 
control subjects were patients undergoing optic nerve 
decompression for traumatic optic neuropathy with-
out any sinonasal disease or allergic rhinitis. Only adult 
subjects were recruited in this study. Anyone who had 
taken oral or nasal corticosteroids or other medications 
(e.g., antibiotics or antileukotrienes) for 4  weeks before 
sample collection was excluded. Other exclusion crite-
ria included those who were pregnant or breastfeeding, 
patients with cystic fibrosis, immune deficiency, sinona-
sal tumor or any other severe concurrent disorders. 
Peripheral blood samples were obtained before surgery 
for flow cytometry analysis of circulating DC subsets; NP 
tissues from NP patients and uncinate process mucosa 
from control subjects were obtained during surgery for 
flow cytometry, quantitative RT-PCR and histology. The 
computed tomography (CT) score (range: 0–24) was 
evaluated by preoperative CT scans using the Lund-Mac-
kay CT scoring system [32]. The endoscopic score (ES) of 
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bilateral nasal polyps was evaluated (range: 0–8) by nasal 
endoscopy as previously described [33]. The total nasal 
symptom score (TNSS) was calculated (range: 0–12) by 
adding up the individual nasal scores including nasal con-
gestion, anterior rhinorrhea, postnasal drip, and loss of 
smell, each evaluated using a scale of 0 = None, 1 = Mild, 
2 = Moderate, or 3 = Severe [6] (Additional file  1: 
Table S5). The atopic status was evaluated by using assays 
for specific IgE (HOB Biotech Group, Suzhou, China) 
against the local common inhalant allergens. Specific IgE 
concentrations above 0.35 IU/mL were considered posi-
tive. The percentages of blood eosinophils in total white 
blood cells were detected by blood routine test, and per-
centages above 5% were considered elevated. The NP tis-
sues were stained with hematoxylin–eosin (HE) method 
to calculate the numbers of tissue eosinophils/high power 
field (HPF) in NP mucosa as well as the percentages of 
eosinophils in the total infiltrating cells, and percentages 
above 10% were considered elevated [5]. The diagnosis of 
asthma and aspirin tolerance was performed by a special-
ist physician and was established according to the Global 
Initiative for Asthma 2006 guideline [34].

Flow cytometry
PBMCs were isolated by means of Ficoll-Hypaque gradi-
ent centrifugation method as previously described [35]. 
Tissue specimens were rinsed with DMEM/F12 medium 
containing 1% penicillin/streptomycin (Gibco, Carls-
bad, California) and 3.4  μg/mL amphotericin B (Ding-
guo, Beijing, China) to remove residual blood. Then, 
tissues were finely minced and digested with collagenase 
type II (2 mg/mL) and Deoxyribonuclease I (0.1 mg/mL) 
(Sigma-Aldrich, St Louis, Missouri) at 37 °C with stirring 
for 1 h. The digested fragments were grinded and filtered 
through a mesh of 40 μm and a single cell suspension was 
obtained, and then the tissue mononuclear cells (TMCs) 
were isolated using Ficoll-Hypaque gradient centrifu-
gation method. DC subsets in TMCs and PBMCs were 
identified by staining with a cocktail of monoclonal anti-
bodies. Specifically, PBMCs and TMCs were incubated 
at 4  °C for 30  min with florescence-conjugated mono-
clonal antibodies against CD1c, CD86, IL-17RB, TSLPR, 
OX40L, PDL1, ICOSL, and polyclonal antibodies against 
ST2. Fluorescence minus one (FMO) controls were also 
prepared for each marker. Species and subtype-matched 
isotype control antibodies were also used in FMOs for 
each sample. Positive gate for each marker in each sample 
was determined by using less than 1% of events on FMO 
samples. The flow cytometry was performed on a Beck-
man Coulter Gallios, and data were analyzed with Kaluza 
Analysis 1.3 (Kaluza software, Fullerton, CA, USA). 

Antibodies used in flow cytometry are listed in Addi-
tional file 1: Table S1.

Quantitative RT‑PCR
Total RNA was extracted from tissue samples by using 
RNAiso Plus reagent and cDNA was reverse transcribed 
by using PrimeScript™ RT Master Mix kit (both from 
TaKaRa, Shiga, Japan) following the manufacturer’s 
instructions. The quantitative PCR of innate and adaptive 
cytokines (IL-25, IL-33, TSLP, IFN-γ, IL-4, IL-5, IL-13 
and IL-17A) was performed by using the FastStart Uni-
versal SYBR Green Master kit (Roche, Mannheim, Ger-
many) with appropriate primers. GAPDH was used as 
an endogenous reference. The sequences of primers are 
listed in Additional file  1: Table  S2. Amplification was 
carried out on the CFX96™ Real-Time PCR cycler (Bio-
Rad, CA, USA) using the cycling conditions as follows: 
10 min’ initial denaturation at 95 °C, 40 cycles consisted 
of 10 s at 95 °C and 30 s at 60 °C. The melting curve was 
obtained from 60 to 95  °C (0.5  °C/s). Expression of tar-
get gene was expressed as fold increase relative to the 
expression of GAPDH. The mean value of the replicates 
for each sample was calculated and expressed as cycle 
threshold (Ct). The amount of gene expression was then 
calculated as the difference (ΔCt) between the Ct value of 
target gene and the Ct value of GAPDH. Fold changes in 
target gene mRNA were determined as 2−ΔCt [36].

Statistical analysis
Statistical analysis was performed using GraphPad Prism 
6 (GraphPad Software, San Diego, CA, USA). The nor-
mality of the data was tested by Shapiro–Wilk test. For 
normally distributed variables, data are presented as 
mean with standard deviation (SD). For abnormally dis-
tributed variables, data are presented as median with 
interquartile range (IQR). The t test, Mann–Whitney U 
test or Chi square (χ2) test was used to compare differ-
ences between groups. The Spearman’s rank correlation 
coefficient was used to analyze the correlations. A P value 
of less than 0.05 was considered significant.

Results
Patient characteristics
Thirty patients with NP and sixteen control subjects were 
included. The clinical characteristics of the study subjects 
are presented in Table 1. Age and gender were matched 
between the two study groups. The percentage of atopy 
in patients with NP was 23.3%. Fourteen patients (46.7%) 
were eosinophilic NP based on a previous criterion [5].
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Increased mRNA expression profile of innate and adaptive 
cytokines in NP tissues
We first compared the mRNA expression profile of 
innate and adaptive cytokines, including IL-25, IL-33, 
TSLP, IFN-γ, IL-4, IL-5, IL-13 and IL-17A, between 
NP and healthy control tissues. Consistent to previous 
reports [23–25], mRNA levels of IL-25, IL-33, TSLP, IL-4, 
IL-5 and IL-13 were significantly higher in NP tissues 
than those in control tissues (Fig.  1a–f). However, no 
significant differences in IFN-γ and IL-17A mRNA levels 
were detected between NP and control tissues (data not 
shown).

Increased numbers of total and activated myeloid DCs 
in NP
Next, we compared the numbers of total and activated 
myeloid (CD1c+) DCs in nasal tissues and blood between 
NP patients and control subjects. The percentage of the 
total CD1c+ cells was increased in NP tissues, but not in 
PBMCs, compared with that of control subjects (Fig. 2a–
c). By contrast, the percentage of the CD86+CD1c+ cells 
was higher in the PBMCs of NP patients, but not in NP 
tissues, than that of control subjects (Fig. 2a, b, d).

Increased expressions of IL‑17RB, ST2 and TSLPR on CD1c+ 
DCs in NP tissues
The expressions of IL-17RB, ST2 and TSLPR on CD1c+ 
DCs were higher in NP tissues than in control tissues 
(Fig. 3a, b). Notably, the mean percentages of IL-17RB+ 

cells and ST2+ cells in the CD1c+ DCs in control tissues 
were 17.8% and 16.2% respectively, whereas in NP tissues 
were 77.6% and 64.5% respectively. By contrast, the mean 
percentage of TSLPR+ cells in the CD1c+ DCs in control 
tissues was 57.3%, whereas in NP tissues was 78.1%, sug-
gesting CD1c+ DCs in nasal mucosa have a constitutional 
expression of TSLPR.

Expression of OX40L, PDL1 and ICOSL on activated CD1c+ 
DCs in NP tissue
To further compare the phenotype of the activated 
CD1c+ DCs between NP and healthy control tissues, we 
analyzed the expression of OX40L, PDL1 and ICOSL on 
the CD86+CD1c+ DCs by flow cytometry. As expected, 
the expressions of OX40L and ICOSL were higher, but 
PDL1 was lower, on the CD86+CD1c+ DCs in NP tis-
sues than their counterpart of control tissues (Fig. 4a, b). 
Moreover, OX40L expression on the IL-17RB+CD1c+ 
DCs was increased in NP tissues (Fig.  4a, b). However, 
no significant difference was found in OX40L expression 
on ST2+ CD1c+ or TSLPR+ CD1c+ DCs between NP and 
control tissues (data not shown).

Correlations of functional phenotypes of CD1c+ DCs 
with cytokine mRNA expression profile in NP tissues
We next analyzed the relationship between IL-17RB, 
ST2 and TSLPR expressions, as well as other functional 
markers, on DC surface and TSLP, IL-25, IL-33 and Th2 
cytokine mRNA expression levels in NP tissues. IL-17RB, 

Table 1  Clinical characteristics of patients with NP and control subjects

For TNSS, CT score and endoscopic score, results are expressed as medians and interquartile ranges

TNSS total nasal symptom score, CT computed tomography, N/A not applicable
a  t-test
b  Chi square (χ2) test

Age (years), mean (SD) Patients (n = 30) Control (n = 16) Test P value

39.67 (12.47) 41.13 (11.40) 0.39a 0.69

Number % Number %

Gender

 Male 18 60 10 62.5 0.03b 0.87

 Female 12 40 6 37.5

Patients with atopy 7 23.3 0 0

Patients with elevated blood eosinophils 12 40 0 0

Patients with elevated tissue eosinophils 14 46.7 0 0

Patients with asthma 6 20 0 0

Patients with aspirin intolerance 0 0 0 0

Patients with smoking 1 3.3% 1 6.3%

TNSS score 7.0 (6.0–8.2) N/A

CT score 18.0 (11.7–22.0) N/A

Endoscopic score 5.5 (4.0–6.0) N/A
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ST2 and TSLPR expression on CD1c+ DCs were posi-
tively correlated with the mRNA expression of their 
ligands, IL-25, IL-33 and TSLP, respectively (r = 0.682, 
0.698 and 0.432, respectively) (Fig. 5a, c, d). Importantly, 
IL-17RB expression on CD1c + DCs was positively cor-
related with Th2 cytokine mRNA levels in NP tissues, 
including IL-5, IL-13 and IL-4 (r = 0.379, 0.557 ad 0.594, 
respectively) (Fig. 5e, h, i). In addition, ST2 expression on 
CD1c+ DCs was positively correlated with IL-5 mRNA 
level in NP tissues (r = 0.497) (Fig. 5g). However, we did 
not find significant correlations between ST2 expression 
on CD1c+ DCs and IL-4 and IL-13 mRNA levels in NP 
tissues. Surprisingly, no significant correlations between 
TSLPR on CD1c+ DCs and Th2 cytokines were observed 
(Additional file 1: Table S3).

For the other functional markers on DC surface, we 
found that OX40L expression on CD86+CD1c+ DCs was 
positively correlated with IL-25 and IL-4 mRNA expres-
sion (r = 0.394 and 0.416) (Fig. 5b, j), but not with IL-33 
or TSLP (Additional file 1: Table S3). Furthermore, PDL1 
expression on CD86+CD1c+ DCs was negatively corre-
lated with IL-5 mRNA level (r = − 0.483) (Fig. 5f ). ICOSL 
expression on CD1c+ DCs was negatively correlated with 
IFN-γ mRNA level (r = − 0.416) (Fig. 5k).

Correlations of DC surface phenotypes with disease 
severity in patients with NP
Last, we analyzed the relationship between DC surface 
phenotypes and CT score, ES, TNSS and tissue eosino-
phil number. The correlation analyses are presented in 
Additional file 1: Table S4. IL-17RB expression on CD1c+ 
DCs was positively correlated with CT score, ES, TNSS 
and tissue eosinophil number, respectively (r = 0.450, 
0.663, 0.441 and 0.439, respectively) (Fig.  6a–d). ST2 
expression on CD1c+ DCs was positively correlated with 
tissue eosinophil number (r = 0.366) (Fig. 6e). In addition, 
OX40L expression on CD86+CD1c+ DCs was positively 
correlated with CT score, TNSS and tissue eosino-
phil number (r = 0.469, 0.545 and 0.368, respectively) 
(Fig. 6f–h).

Discussion
The data presented in our study demonstrate that mDCs 
(CD1c+ DCs) accumulated in NP tissues expressed 
increased IL-17RB and ST2, which were positively cor-
related with their counterpart ligands IL-25 and IL-33 
mRNA levels, as well as IL-5 mRNA level and eosinophil 
numbers in NP tissues. Given both IL-25 and IL-33 are 

Fig. 1  Relative mRNA expression levels of cytokines in NP tissues. Epithelium-derived cytokines IL-25 (a), IL-33 (b) and TSLP (c); Th2 cytokines IL-4 
(d), IL-5 (e) and IL-13 (f) were measured by quantitative RT-PCR. In control group, n = 16; in NP group, n = 30. Data are presented as mean with SD or 
median with IQR
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predominantly produced by epithelial cells and have been 
shown to play an important role in the initiation and 
development of type 2 immune response [27], our data 
provide evidence for a link between mDCs and IL-25- 
and IL-33-induced type 2 responses and eosinophilic 
inflammation in NP.

NP has been known to be a Th2-skewed eosinophilic 
inflammation in the nasal sinus mucosa. T helper type 
2-associated cytokines IL-4, IL-5 and IL-13 are involved 
in the pathogenesis of the eosinophilic airway diseases 
such as allergic asthma, allergic rhinitis and NP [37, 38]. 
IL-25, IL-33 and TSLP have recently been considered as 
potential therapeutic targets because of their important 
roles in initiating the type 2 inflammation [39]. In the 
present study, we found significant elevation in transcript 
levels of IL-25, IL-33 and TSLP, as well as IL-4, IL-5 and 
IL-13, but not IFN-γ and IL-17A, in patients with NP 
when compared with control subjects, which are largely 
consistent with previous reports [23, 25, 40], confirming 
the Th2-skewed innate and adaptive immune responses 
in the pathogenesis of NP.

DCs, particularly in the airway, play a critical role in 
the induction of peripheral tolerance and maintenance of 
immune homeostasis [41]. Therefore, DCs in the airway 
require some degree of activation to exert their function. 

This might explain why no difference in the percentage 
of activated mDCs in TMCs between patients with NP 
and control subjects was observed in the present study. 
In addition, we found PDL1 expression on CD86+CD1c+ 
DCs was lower in NP tissues than control tissues and 
negatively correlated with IL-5 mRNA level, this is in line 
with a recent study by Kortekaas et, al [42], showing that 
the PDL1 mRNA level was lower, but PD1 was higher and 
positively correlated with IL-5 mRNA level, in NP tissue. 
Furthermore, we found increased number of activated 
mDCs in PBMCs, but not in polyp tissues, in patients 
with NP, suggesting that the mDC pathogenicity might 
not be restricted to the local inflammatory responses in 
NP. However, these results are inconsistent with a recent 
study by Shi et, al, showing no significant difference 
in the percentage of mDCs and activated DC subsets 
between NP and control subjects [17]. The discrepancy 
may arise from differences in technical approaches. For 
example, we used CD1c as the marker of mDCs, whereas 
Shi et al. chose CD11c, which could also be expressed on 
some macrophage population [43].

From previous reports, IL-25, IL-33 and TSLP can 
affect the properties and functions of DCs. For example, 
IL-25 instructs DCs to promote Th2 and Th9 inflamma-
tion in mouse models of allergic airway inflammation [29, 

Fig. 2  Percentages of total and activated CD1c+ DCs in NP tissues and blood. Representative flow-cytometry pseudocolor density plots, in which 
pink-blue-green–red indicates increasing cell density, showing the percentages of total CD1c+ DCs and CD86+CD1c+ DCs in nasal tissues and 
blood from healthy controls (n = 16) (a) and polyp tissues and blood from NP patients (n = 30) (b). Quantification of the percentages of total CD1c+ 
DCs (c) and CD86+CD1c+ DCs (d) in NP tissue and blood. Data are presented as mean with SD or median with IQR



Page 7 of 12Zheng et al. Clin Transl Allergy            (2018) 8:50 

44]. IL-33 activates DCs to express CCL17 and CCL22 
through ST2 signaling [45]. TSLP-licensed DCs are 
responsible for the initiation of allergic airway inflamma-
tion [13, 28, 46]. However, whether DCs in NP respond 
to these innate type 2 cytokines remains unknown. In the 
present study, we demonstrated that mDCs accumulated 
in NP tissues exhibit elevated surface expression of IL-
17RB, ST2 and TSLPR, suggesting that mDCs in NP have 
the potential to respond to IL-25, IL-33 and TSLP. These 
findings are parallel to our recent study in patients with 
allergic rhinitis [31].

Ample evidences have indicated that the signals pro-
vided by the surface of DC subsets dictate Th1-Th2 dif-
ferentiation. For example, it has well been shown that 
surface expression of OX40L is critical for the induction 
and maintenance of type 2 immune response elicited by 
TSLP-activated DCs [13, 46]. PD-1/PDL1 interactions 
play an important role in maintaining peripheral toler-
ance [47, 48]. ICOSL has been reported to be involved in 
DC-driven Th2 response to allergens [49]. In our study, 
we found that activated mDCs expressed higher level of 

OX40L and ICOSL, but lower level of PDL1, in NP than 
those of control subjects. Furthermore, increased OX40L 
expression on activated mDCs was positively corre-
lated with IL-4 and IL-25 mRNA levels, as well as tissue 
eosinophil numbers. In contrast, increased ICOSL and 
decreased PDL1 were negatively correlated with IFN-γ 
and IL-5 respectively. These results further suggest that 
mDCs might play a potential role in the IL-25- and IL-
33-induced Th2 inflammation via expression of func-
tional surface molecules, such as OX40L, ICOSL and 
PDL1, in NP.

Previous study showed that TSLP-induced OX40L 
expression on DCs is required for initiation of Th2 cell 
polarization, proposing an important role OX40L on 
DCs plays in determining T cell differentiation [46]. 
However, although increased expression of TSLP mRNA 
was noted in NP, we did not find significant association 
between TSLP mRNA level and OX40L expression on 
activated mDCs in NP, implying that TSLP might induce 
Th2 immune response not through OX40L expression 

Fig. 3  Expressions of IL-17RB, ST2 and TSLPR on CD1c+ DCs in NP tissues. Representative flow-cytometry pseudocolor density plots, in which 
gray-pink-blue indicates increasing cell density, showing the IL-17RB, ST2 and TSLPR expressions by CD1c+ DCs in nasal tissues from healthy controls 
(n = 16) and polyp tissues from NP patients (n = 30) (a). Quantification of IL-17RB, ST2 and TSLPR expressions by CD1c+ DCs (b). Data are presented 
as a percentage of the positive cells in CD1c+ DCs and mean with SD or median with IQR
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on mDCs in NP. Further functional studies are needed to 
address this hypothesis.

Group 2 innate lymphoid cells (ILC2s) are a recently 
identified innate cell subset that produces large 
amounts of IL-5 and IL-13 and therefore serve an 
important role in orchestrating the type 2 inflammation 
[50–52]. IL-25, IL-33 and TSLP have been shown to 
be the key for production of type 2 cytokines by ILC2s 
[50–52]. Several studies have demonstrated that ILC2s 

are increased in NP tissues [24, 53, 54]. However, our 
recent study [26] found that the IL-17RB expression on 
ILC2 in NP was relatively low and unable to be upregu-
lated by IL-25 in vitro, implying that ILC2 might not be 
critical in mediating IL-25-induced Th2 inflammation 
in NP. Whether this is the case for IL-33 remains to be 
investigated.

Although we have provided new information that ele-
vated expression of IL-17RB and ST2 on mDCs might 

Fig. 4  Expressions of OX40L, PDL1 and ICOSL on activated CD1c+ DCs in NP tissues. Representative flow-cytometry pseudocolor density 
plots, in which gray-pink-blue indicates increasing cell density, showing the percentages of CD86+OX40L+, CD86+PDL1+, CD86+ICOSL+ and 
IL-17RB+OX40L+ cells in CD1c+ DCs in nasal tissues from healthy controls (n = 16) and polyp tissues from NP patients (n = 30) (a). Quantification of 
CD86+OX40L+, CD86+PDL1+, CD86+ICOSL+ and IL-17RB+OX40L+ cells in CD1c+ DCs (b). Data are presented as a percentage of the positive cells in 
CD1c+ DCs and mean with SD or median with IQR
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Fig. 5  Correlation of DC surface phenotypes with cytokine mRNA expression levels in NP tissue. Correlations of the mRNA levels of IL-25 with the 
percentage of IL-17RB on CD1c+ DCs (a) and the percentage of OX40L on CD86+CD1c+ DCs (b), IL-33 with the percentage of ST2 on CD1c+ DCs 
(c), TSLP with the percentage of TSLPR on CD1c+ DCs (d), IL-5 with the percentage of IL-17RB on CD1c+ DCs (e), PDL1 on CD86+CD1c+ DCs (f) and 
ST2 on CD1c+ DCs (g), IL-13 with the percentage of IL-17RB on CD1c+ DCs (h), IL-4 with the percentage of IL-17RB on CD1c+ DCs (i) and OX40L on 
CD86+CD1c+ DCs (j), and IFN-γ with the percentage of ICOSL on CD86+CD1c+ DCs (k) in NP tissues

Fig. 6  Correlations of DC surface phenotypes with disease severity in patients with NP. Correlations of the percentage of IL-17RB expression on 
CD1c+ DCs in NP tissues with CT scores (a), endoscopic scores (b), TNSS (c) and mean tissue eosinophil count (d). Correlation of the percentage of 
ST2 expression on CD1c+ DCs in NP tissues with mean tissue eosinophil count (e). Correlations of the frequencies of CD86+OX40L+ cells in CD1c+ 
DCs in NP tissues with CT scores (f), TNSS (g) and mean tissue eosinophil count (h). CT computed tomography, ES endoscopic score, TNSS total nasal 
symptom score, Eos eosinophil, HPF high-power field
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underlie the pathogenesis of IL-25- and IL-33-induced 
Th2 inflammation in NP, several limitations still need to 
be addressed before more definitive conclusions can be 
drawn. First, we were unable to perform functional exper-
iments to analyze the direct effect of IL-25 and IL-33 on 
mDCs due to the technical limitations of the isolation 
of pure DCs from NP tissue. Second, the present study 
was an ex vivo study. It did not provide direct evidence of 
the role of IL-17RB and ST2 on mDCs in promoting Th2 
inflammation in vivo. Third, the sample size is relatively 
small, since we did not observe several expected correla-
tions such as between ST2 expression on mDCs and IL-4 
and IL-13. Moreover, it should be noted that several cor-
relations were weak, such as between OX40L expression 
on CD86+CD1c+ DCs and IL-25 mRNA level and tissue 
eosinophil number (r = 0.394 and 0.368, respectively), 
ST2 expression on CD1c+ DCs and tissue eosinophil 
number (r = 0.366), although the P values were less than 
0.05. Further studies are needed to address these issues.

Conclusion
In conclusion, myeloid DCs accumulated in NP showed 
a phenotype characterized by increased expression of 
IL-17RB, ST2 and TSLPR, which was positively corre-
lated with the IL-25, IL-33 and TSLP mRNA levels in NP 
respectively. Furthermore, the IL-17RB and ST2 expres-
sions on mDCs were also correlated with the IL-5 mRNA 
level and eosinophil numbers in NP tissues, suggesting 
that mDCs might play a role in IL-25- and IL-33-induced 
type 2 responses and eosinophilic inflammation in NP.
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surface phenotypes and disease severity in patients with NP (n = 30). 
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