

## **POSTER PRESENTATION**

**Open Access** 

# Beta lactam hypersensitivities

Marie Eliane\* Azoury<sup>1\*</sup>, Noémie\* Scornet<sup>2</sup>, Stéphanie Delluc<sup>3</sup>, Sandrine Delarue-Cochin<sup>2</sup>, Cathy Nhim<sup>1</sup>, Bernard Maillere<sup>4</sup>, Richard Weaver<sup>5</sup>, Nancy Claude<sup>5</sup>, Delphine Joseph<sup>2</sup>, Marc Pallardy<sup>1</sup>

From 6th Drug Hypersensitivity Meeting (DHM 6) Bern, Switzerland. 9-12 April 2014

### **Background**

Allergic reactions to drugs are often unpredictable and can lead to serious side effects such as anaphylactic shock. According to the hapten hypothesis, any drug with a molecular weight lower than 1000 daltons cannot induce an immune response by itself and must be bound to a protein. Antigen presenting cells, such as dendritic cells (DC), internalize hapten-protein conjugates and digest them into peptides bound with the drug. The latter are then presented on HLA molecules to drug-specific T cells inducing specific-drug immune response. Knowing that drugs provoke IgE mediated hypersensitivity reactions in treated patients, the CD4+ T-cell response to benzylpenicillin (BP) was investigated. The objectives of this study were to evaluate the frequency of naïve CD4+ T cells specific to BP and to identify BP-haptenized peptides responsible for T lymphocyte activation.

### Method

Since BP is known to bind covalently to proteins, such as Human Serum Albumin (HSA), HSA-BP bio-conjugates were synthesized at basic pH (pH=10.8). Seventeen BP binding-sites on HSA were then identified using mass-spectrometry, and 12 BP-haptenized peptides of 15 mer long potentially presented to T-cells via HLA class II molecules were identified and synthetized. Naïve CD4+T cells from non-allergic donors were stimulated once a week with autologous DC loaded with HSA-BP or with peptide-BP to amplify respectively HSA-BP- or peptide-BP-specific T cells. Activation of specific CD4+T cells was detected using interferon- EliSpot and their frequency was calculated using the Poisson distribution law.

#### **Results**

The results of the CD4+ T-cell response to BP were as follows:

- Detection of HSA-BP-specific CD4+ T cells in 12 out of 13 tested donors with a mean frequency of 0.26 cells/million of circulating CD4+ T cells
  - Identification of 17 binding sites of BP on HSA
- Specific naïve CD4+ T cells recognized at least 3 specific peptides, from HSA, haptenized by BP.

#### Conclusion

This study showed the capacity of HSA-BP to be recognized by naïve T-cells from multiple healthy donors irrespective of their HLA typing and the possibility to identify BP-haptenized peptides involved in the allergic reaction to BP.

#### Authors' details

<sup>1</sup>UniverSud, Inserm UMR996, France. <sup>2</sup>UniverSud, UMR CNRS8076, France. <sup>3</sup>Platine Pharma service, France. <sup>4</sup>CEA, IbiTecS, Simopro, France. <sup>5</sup>Institut de Recherches Internationales Servier, France.

Published: 18 July 2014

#### doi:10.1186/2045-7022-4-S3-P65

Cite this article as: Azoury et al.: Beta lactam hypersensitivities. Clinical and Translational Allergy 2014 4(Suppl 3):P65.

# Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit



<sup>&</sup>lt;sup>1</sup>UniverSud, Inserm UMR996, France Full list of author information is available at the end of the article

