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Abstract

Experimental in silico, in vitro, and rodent models for screening and predicting protein sensitizing potential are
discussed, including whether there is evidence of new sensitizations and allergies since the introduction of
genetically modified crops in 1996, the importance of linear versus conformational epitopes, and protein families
that become allergens. Some common challenges for predicting protein sensitization are addressed: (a) exposure
routes; (b) frequency and dose of exposure; (c) dose-response relationships; (d) role of digestion, food processing,
and the food matrix; (e) role of infection; (f) role of the gut microbiota; (g) influence of the structure and
physicochemical properties of the protein; and (h) the genetic background and physiology of consumers. The
consensus view is that sensitization screening models are not yet validated to definitively predict the de novo
sensitizing potential of a novel protein. However, they would be extremely useful in the discovery and research
phases of understanding the mechanisms of food allergy development, and may prove fruitful to provide
information regarding potential allergenicity risk assessment of future products on a case by case basis. These data
and findings were presented at a 2012 international symposium in Prague organized by the Protein Allergenicity
Technical Committee of the International Life Sciences Institute’s Health and Environmental Sciences Institute.
Introduction
In April 2012, an international symposium titled “Sensi-
tizing Properties of Proteins” was held in Prague, Czech
Republic, bringing together over 70 scientists from aca-
demia, government, and industry. The purpose of the
symposium, organized by the Protein Allergenicity Tech-
nical Committee (PATC) of the International Life Scien-
ces Institute’s (ILSI) Health and Environmental Sciences
Institute (HESI), was to present data on the current state
of the science regarding the sensitizing properties of
proteins in relation to food allergy [1-3]. For the pur-
poses of this manuscript, allergic sensitization is implied
in the context of food allergy by the formation of antigen
specific IgE.
Screening methods are the focus of this manuscript.

Topics include in silico, in vitro, and rodent screening
models that have been evaluated to predict protein sen-
sitizing potential. In addition, background discussion is
provided on whether there is evidence of new sensitiza-
tions and allergies since the introduction of GM crops in
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1996, the importance of linear versus conformational
epitopes, and protein families that become allergens.

New proteins in the food chain: Is there evidence of new
sensitization and allergies?
There is extensive knowledge of allergy to some foods
and sensitization patterns (skin prick tests and specific
IgE) to diverse dietary proteins. Scientists and the public
often ask whether there is evidence that genetically mo-
dified (GM) crops have increased food allergy since they
began entering the food chain in 1996 or whether people
are becoming allergic to the novel proteins encoded by
the inserted DNA [4]. Some people comment that the
prevalence of food allergy is rising dramatically since the
introduction of GM soybeans. However, the prevalence
of food allergy to common specific food sources is low
(e.g., <0.01% for maize and approximately 0.4% for soy-
bean) based on published reviews of studies using food
challenges and detailed clinical histories [5,6]. Reports
using only sensitization as measured by specific IgE tests
have reported levels as high as 1 to 4% for the same
foods [7]. Thus, claims of increased prevalence should
be viewed with caution. Positive results with specific IgE
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and skin prick tests (SPT) do not prove allergy; rather,
they prove only sensitization or cross-reactivity. More
than 16 years after regulatory approval of the first GM
plants, only one potential product was demonstrated to
present a real risk of food allergy, i.e., a soybean with a
gene transferred from the Brazil-nut tree. The potential
product was stopped during development and never
commercialized, as testing with sera from Brazil-nut aller-
gic subjects demonstrated IgE binding and SPT positivity
for five Brazil-nut allergic subjects [8]. The evaluation was
similar to the Codex Alimentarius Guideline strategy used
to assess GM crop safety today [9].
The question of whether transformation of a gene

might increase endogenous allergenicity has been raised.
While there have been few controlled studies evaluating
potential changes in endogenous allergenicity, a signifi-
cant finding was widely differing variety-to-variety IgE
binding to non-GM as well as GM varieties of soybean in
a Danish study [10]. Studies at the University of Nebraska
have evaluated IgE binding to three other GM soybean
events by immunoblotting (1D and 2D) and ELISA inhib-
ition, finding no significant differences between the GM
and non-GM varieties [11].
Serum IgE binding to the CP4 EPSPS (5-enolpyruvyl-

shikimate-3-phosphate synthase) protein in Monsanto’s
herbicide tolerant soybean was tested as a post-market-
monitoring evaluation using soybean allergic serum sam-
ples from Korea and central Europe [12]. No specific
IgE binding was found to the CP4 EPSPS protein. Post-
market-monitoring could be performed based on con-
sumer complaint communication and follow-up, or by
direct testing of selected populations. The intent of ei-
ther is to sample the population of new consumers to
measure sensitization rates and provide data for consid-
ering risk [13]. However, it is important to consider the
technical challenges of measuring specific sensitization
in real populations. The sample size and selection of sub-
jects are critical, an estimate of exposure is essential, and
baseline (pre-exposure) serum samples are helpful, as well
as post-exposure measurement and clinical evaluation.
StarLink® maize, expressing approximately 50 ppm of

Cry 9C protein from Bacillus thuringiensis that was to-
xic to various insect pests of maize and acts as a pesti-
cide, was developed in the mid-1990s by Plant Genetic
Systems of Belgium. The protein was stable to digestion
in pepsin, a characteristic that is considered a potential
risk factor for either sensitization or elicitation of food
allergy. However, at such low concentrations, it is an
unlikely candidate as a potential new food allergen,
and there are a number of highly stable non-allergenic
food proteins [14-16]. The product was not approved for
food, and animal feed approvals were withdrawn even
though no evidence of allergenicity was demonstrated in
humans.
The alpha-amylase inhibitor (άAI) protein is expressed
at up to 4% of protein in many rarely allergenic common
beans (Phaseolus vulgaris). The gene was transferred
into field peas (Pisum sativum) to protect the seeds from
storage beetles which can cause 100% loss of product.
The GM pea was tested in a non-validated animal mo-
del, triggering sensitization and eosinophilia during air-
way provocation [17]. The results have blocked further
development of GM legumes with transferred άAI in
regions that would certainly benefit from the products
[9]. A more recent study was unable to reproduce the
Prescott et al. findings, and reported that the GM pea
was no more allergenic than non-GM peas and other
legumes [18]. Evaluation of the άAI protein following
Codex guidelines (unpublished, Goodman) indicated a
need to test serum IgE binding with peanut sera due to
low level sequence identity of άAI with peanut agglu-
tinin, a protein rarely reported to cause allergy. Sera
from 34 peanut allergic subjects failed to demonstrate
cross-reactivity, but did uncover specific IgE binding to
asparagine-linked carbohydrate determinants (CCD) on
άAI in common with binding to CCD on other legume
proteins [19]. However, basophil tests using the same
sera failed to demonstrate activation, suggesting there is
little likelihood of a risk of food allergy to this product.
Certainly the risk is no different than that posed by com-
mon beans. As of 2013, there is no proof that the in-
troduced protein in any approved GM plant has caused
food allergy.
The introduction of whole new foods (e.g., kiwifruit) in

a population, or the introduction of commonly con-
sumed foods in the diet of any individual, may lead to
sensitization and food allergy. Although eating is a risk
factor for food allergy, there are only certain foods that
can cause significant food allergies, with only a few of
the many proteins in food accounting for such allergic
reactions. The Codex [20] guideline for evaluating food
safety was designed to maximize the probability of iden-
tifying significant risks of food allergy. The primary risk
would be introducing a major allergen from one source
into a new food source or transferring a protein that is
nearly identical to a major allergen and capable of caus-
ing cross-reactions. Those high risks are for individuals
who are already sensitized, and methods for assessing
such risks are relatively straightforward [9]. There is still
much to learn about factors influencing sensitization and
prediction of allergenicity; however, at this time, the most
likely high-risk GM events can be identified and their
introduction stopped.

Allergenicity of linear versus conformational epitopes
Mapping studies of IgE antibody-binding epitopes have
traditionally focused, by design, on the identification of li-
near epitopes by testing synthetic peptides or recombinant
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allergen fragments for IgE antibody recognition. However,
the three-dimensional (3D) structure of the allergen has
been ignored by this strategy, and information on con-
formational epitopes in allergens is lacking. Although
conformational epitopes are common in inhaled aller-
gens, food allergens may contain them as well if the
allergen is not completely cleaved in the digestive tract
and digestion-resistant fragments are absorbed. In recent
years, conformational epitopes in seven allergens have
been identified by solving the X-ray crystal structure of
the allergen in complex with antibody fragments (Fab or
Fab) [21]. This experimental approach is the most accur-
ate way to define an epitope. Presently, there are no com-
putational methods to accurately predict B-cell epitopes,
and this experimental approach is the most accurate way
to define an epitope. The antibodies used in these studies
were either IgG that inhibit IgE antibody binding or re-
combinant IgE from combinatorial libraries made from
blood of allergic donors. Allergens in complex with frag-
ments of IgG antibodies recognizing epitopes that overlap
with IgE antibody-binding sites have been reported for
Api m 2, Bet v 1, Bla g 2, Der p 1, and Der f 1. At least
four complexes of chicken egg lysozyme with IgG anti-
body fragments have also been reported, but the overlap
of IgG and IgE epitopes is unknown. The structures
of only two allergens (Bos d 5 and Phl p 2) in com-
plex with recombinant IgE antibodies from combinatorial
libraries have been solved. These studies have revealed
mechanisms of allergen-antibody interaction and the
structure of conformational epitopes. The nature of anti-
body recognition was defined by identifying key residues,
as well as the kind of interactions involved (cation-π,
hydrogen bonds, hydrophobic) [22-24]. Expression of epi-
tope mutants in Pichia pastoris and antibody-binding ana-
lysis revealed the importance of mutated amino acids for
the allergen-antibody interaction [23,24].
Figure 1 Overlap of the X-ray crystal structures of natural Der p 1 in
structure of Der f 1 in complex with the same antibody fragment (vio
between both dust mite allergens: the Fab recognizes the same area in De
an IgE antibody binding site [24].
The structural basis of cross-reactivity between two al-
lergens was reported for the first time by solving the
structures of the dust mite allergens Der p 1 and Der f 1
in complex with a monoclonal antibody (mAb) that in-
hibits IgE antibody binding (Figure 1) [24]. Single mu-
tants of residues in the epitope showed reduced IgE
antibody binding, proving the overlap of the mAb epi-
tope and IgE antibody-binding sites. Studies like these
that take into account the 3D structure of allergens are
also needed for food allergens to fully understand the B-
cell repertoire and gain new insight into the molecular
basis of cross-reactivity for allergenicity prediction [21].
The criteria for assessing risk of sensitization to new

foods have evolved with time, precisely taking into ac-
count the fact that linear epitopes are not sufficient to
explain the total IgE reactivity of proteins. The original
guidelines for allergenicity assessment of GM crops used
a decision tree based on few criteria [9,25,26]. One of
them was the presence of small, contiguous identical
amino acid matches to a known allergen in the sequence
of the potentially allergenic protein as risk of cross-
reactivity. This criterion resulted in a restricted identifi-
cation of only potential linear epitopes. A slightly less
conservative criterion of greater than 35% identity over
80 or more amino acids using FASTA or BLASTP was
also proposed by the Food and Agriculture Organization
(FAO) and the World Health Organization (WHO) of
the United Nations panel, was accepted by the Codex
Alimentarius Commission in 2003, and also acknowl-
edged by the European Food Safety Authority (EFSA)
[27-29]. This new criterion addressed the fact that the
molecular basis of cross-reactivity is not only in the pri-
mary structure of the proteins, but in the tertiary structure
as well. Therefore, it takes into account the existence of
conformational B cell-epitopes. In general, just consider-
ing the primary structure of the protein, <50% amino acid
complex with an Fab of the mAb 4C1 (cyan) with the X-ray crystal
let). The structures show the molecular basis of cross-reactivity
r p 1 and Der f 1, which is a conformational epitope overlapping with
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identity among proteins rarely results in antigenic cross-
reactivity. At this low level of identity, and for proteins
with the same overall fold, the molecular surface is quite
different. High risk of cross-reactivity exists among pro-
teins with >70% identity [9,30]. Exceptions to this general
rule may exist because, in addition to the primary struc-
ture of the allergen, the tertiary structure of the protein
plays a major role in IgE antibody recognition. Never-
theless, the guidelines mentioned above are useful for
assessing potential cross-reactivity among homologous
proteins.
Antibodies recognize a group of residues from which

only a few (approximately 5-8) contribute most of the
binding energy and are the essential amino acids from
conformational epitopes [31]. These residues are usually
non-consecutive and located far apart in the primary
structure of the protein, involving different loops or se-
condary elements of the allergen. Therefore, it is very
useful to know the 3D structures of allergens in order to
locate antibody recognition sites. Currently, there are
approximately 715 allergens in the official database for
the systematic allergen nomenclature that is approved
by WHO and the International Union of Immunolo-
gical Societies (WHO/IUIS) Allergen Nomenclature Sub-
committee (www.allergen.org). However, the 3D structure
has been solved only for ~75 allergens, i.e., ~10% of the
allergens in the database, from which only ~24 are food
allergens (as assessed from the WHO/IUIS Allergen No-
menclature database and the Protein Data Bank). Al-
though there is no simple rule or algorithm that allows
prediction of protein allergenicity, information derived
from the 3D structure of allergens and conformational
epitopes is very useful to assess the allergenicity of new
proteins on a case-by-case basis. Specifically, the location
of IgE antibody-binding epitopes in allergens can be useful
for the identification of potential allergens among novel
allergen-homologous proteins.

Protein families that become allergens
Only a restricted number of protein families accounts
for the majority of food allergic reactions in predisposed
individuals. In fact, only 2% of all known protein families
so far contain allergenic proteins [32]. The most import-
ant allergenic protein families from plant foods are the
prolamin superfamily, including the non-specific lipid
transfer proteins (nsLTPs) and the 2S albumins, as well
as the cupin superfamily with the 11S and 7S globulins
[33]. nsLTPs are relevant plant food allergens with a ro-
bust structure due to four disulfide bridges, which makes
them less susceptible to gastrointestinal digestion. Es-
pecially in fruits from the Rosaceae family, nsLTPs ac-
count for severe allergic reactions in patients. In addition,
nsLTPs have been identified in pollen, tree nuts, peanut,
and vegetables. Although the overall protein fold is
present in all these nsLTPs, their cross-reactivity with
clinical relevance is related to sequence similarity and
follows the botanical relationship [34].
2S albumins also are proteins with a distinct robust

3D structure, formed by four disulfide bridges. 2S albu-
mins from peanut and tree nuts are recognized as aller-
gens that induce rather severe allergic reactions, while
for other plant species (e.g., sunflower 2S albumin), aller-
genic reactivity is weaker. Reports identified cross-reactivity
among 2S albumins from peanut and lupine, mustard and
rapeseed, and sesame and poppy seeds, respectively.
The 7/8S and 11S seed storage globulins are the major

components of seeds of dicotyledonous species. Typical
allergens from the 7/8S protein family are Ara h 1 from
peanut and Jug r 2 from walnut. The 11S globulins are
allergenic proteins in peanut (Ara h 3), soybean (Gly m
6) and Brazil nut (Ber e 2). Cupins share a similar overall
fold but sequence similarities among proteins from differ-
ent botanical families are low and thus cross-reactivity is
limited.
The panallergen profilin and the Bet v 1-related pro-

teins have been identified in various plant tissues and
are mostly responsible for the pollen-food cross-reactivity.
Profilins are ubiquitous proteins, involved in various cell
signalling pathways such as cytokinesis. Despite rather
high sequence similarity among different plant profilins
(around 75%) and frequent IgE cross-reactivity, their cli-
nical significance as allergens seems to be restricted to
certain plant foods such as melon and citrus fruits. Usually
pollen profilins are regarded as the primary sensitizers,
and the protein displays an intermediate stability when
subjected to gastro-duodenal digestion. However, regard-
ing the sensitization patterns to profilins, a North-South
difference in Europe could be identified with a higher rele-
vance in Southern Europe versus a lower sensitization
range in Northern parts of Europe [35]. Bet v 1 related
proteins all share a similar 3D structure and display rather
high sequence similarity. These proteins are identified as
allergens in a range of pollens and plant foods usually
evoking mild symptoms, whereas in some cases, as in soy-
bean, the Bet v 1 homologous allergen accounts for severe
reactions in patients.
Among the animal food allergens, parvalbumins, tro-

pomyosins, and the caseins are the most important pro-
tein families. Parvalbumins are the major allergens in
fish and are characterised by an EF hand motif. They are
Ca2+ binding proteins (composed of two helixes, E and F)
with resistance to heat treatment and proteolysis. Their
characteristic fold contributes to the IgE binding activity
and, together with sequence similarity, accounts for cross-
reactivity with clinical significance. Tropomyosins, highly
conserved proteins with a central intracellular function,
are major allergens from crustaceans and molluscs. They
are also identified as allergens in mites and cockroaches.

http://www.allergen.org


Table 1 The Sens-it-iv toolbox

Keratinocytes NCTC2544 test

Human reconstituted skin

Lung EC Precision cut lung slices

Human reconstituted alveolar epithelium

Human reconstituted bronchial epithelium

Specific sensitizer profil

DC Xenobiotic sensing (genomic profile)

Maturation #1 (CD86, CD54, IL-8, …)

Maturation #2 (DotSCan)

Migration

T-cells Primary T-cell stimulation

Other Neutrophil - THP-1 metabolization tests

Proteomics marker profile (combined list)
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Their alpha helical structure remains unaffected when
subjected to heat treatment and enzymatic digestion. Ca-
seins are proteins restricted to mammalian species and are
abundant in milk. They bind Ca2+ and typically form clus-
ters with a random coil structure. IgE cross-reactivity be-
tween caseins from different species is related to sequence
similarity.
In summary, it seems that conserved structures and

certain biological activities contribute to allergenic acti-
vity. Within a protein family, the presence of highly con-
served surface structures and sequence identities above
50% account for clinically relevant cross-reactivity. Efforts
have been undertaken to study the physicochemical prop-
erties of allergens and to identify relevant IgE-binding epi-
topes, which in turn helped to discriminate between
hypo- and hyper-allergenic molecules. These well-defined
proteins can now be used to study molecular mechanisms
involved in their uptake across mucosal barriers and their
interaction with the immune system [36]. Improved
knowledge on the specific uptake and processing of al-
lergens will contribute to understanding the factors that
make a protein an allergen.

Evaluation of the sensitizing potential of industrial
enzymes using the results from Sens-it-iv, a project
funded by EU Framework Programme 6
The number of industrial applications involving proteins
has been increasing during the last decade. In particular,
enzymes are increasingly used for processing food and
as food additives for human and animal use. Along with
these industrial applications, more and more new foods
are being introduced, while established foods are genet-
ically modified to contain new proteins providing them
with new favorable characteristics. The use of proteins
in applications intended for consumption exposes consu-
mers to a potential risk for acquiring an allergic response.
Strategies for risk assessment and risk management of
novel proteins in food continue to evolve. Currently, risk
assessment is based on amino acid sequence similarities of
a novel protein with known allergens, gene source, physi-
cochemical similarities, and when necessary (i.e., a positive
amino acid match to a known allergen), IgE binding stu-
dies with relevant allergic patient sera.
European legislation (e.g., Directive 2012/69/EU) and

the US National Research Council (NRC) vision and
strategy for toxicity testing in the 21st century (Tox21)
[37] are currently driving toxicity testing from animal-
based testing towards in vitro testing using human cell-
based tests addressing pathways of toxicological concern
(e.g., sensitization and allergy development [38,39]). While
relevant pathways of toxicological concern have not yet
been accurately described for sensitization and allergy
triggered by food proteins, progress has been made in
the understanding of skin sensitization to chemicals
and respiratory sensitization to both chemicals and
proteins [40,41].
Currently, selected tests from the Sens-it-iv toolbox

(Table 1) are in the process of being implemented in
strategies for assessing the relative risk associated with
the production (occupational risk) and use of novel pro-
teins in consumer product applications. A testing strat-
egy for determining the lung sensitizing capacity and
relative potency of serine proteases in an industrial set-
ting (occupational risk) has been developed. Novel pro-
teins are assessed relative to well-established industrial
proteins for which historical in vivo and in vitro data are
available and for which the exposure scenario has been
established. The “benchmark” approach was preferred
because the novel in vitro test approaches are not yet
considered sufficiently documented for allowing assess-
ment of the absolute risk associated with the application
of a novel protein. The preferred strategy is a weight-of-
evidence approach that compares in a descriptive, semi-
quantitative way the impact of the benchmark protease
and a novel protease on well-established pathways of
toxicological concern (Figure 2). The initial step of the
strategy is to collect all the in vivo and in vitro data that
are available on enzymes going through the same pro-
duction processes in general and of proteases specifi-
cally. These historical data are to be used as reference
data for bridging the gap between human occupational
safety and computational, immunochemical and in vitro
data.
Computer-aided data mining systems are extremely

useful tools for identification of potential modes of action
by which the protein of interest may cause sensitization
and allergy. Several lines of evidence suggest that protease
activity may facilitate sensitization, and several mecha-
nisms have been postulated [40]. The acquired infor-
mation makes it possible to optimize the in vitro testing
strategy for characterization of the enzyme. Sequence and



Figure 2 Testing strategy for determining the lung sensitizing capacity and relative potency of proteins.
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structural homology of the targeted protein with proteins
that are known to be involved in allergic inflammation
and lipid-binding can provide additional information
about the potential risk for the protein being an allergen
[42]. Methods for assessing similarities between primary
amino acid sequences, physicochemical and structural
propensities, and 3D structures of proteins with known
and unknown antigenicity are used to predict the aller-
genic potential of a novel protein. However, comparison
of the available technologies has revealed that antigenicity
of a protein is not described by these characteristics alone.
Molecular characteristics of the amino acid sequences in-
volved in T- and B-cell epitopes are required [43]. T-cell
epitope mapping studies and computational algorithms
have already allowed the identification of several major T-
cell epitopes, and are believed to refine the understanding
of the immune responses to allergens [44]. There is no
computational method available yet that can predict B-cell
epitopes in a reliable way, though a few have been re-
ported on a number of proteins [45].
Sera from exposed and non-exposed humans and ani-

mals (typically guinea pigs, mice, rats and rabbits) can
be used in a direct or a competitive ELISA to assess to
what extent a novel protein shares B-cell epitopes with
the benchmark protein (cross-reactivity). It has to be
stressed, however, that additional in vivo studies and im-
munochemical analyses have to be performed in order
to eliminate the possibility that the novel protein has
epitopes that are not present on the benchmark protein.
A variety of in vitro tests addressing specific key events

of sensitization are now available for the skin and the re-
spiratory tract. Figure 3 suggests a strategy addressing
different aspects of sensitization. It is now generally ac-
cepted that for a compound to trigger sensitization, it
must have the capacity to (i) penetrate the tissue, (ii)
trigger inflammation at both the epithelial and dendritic
cell (DC) level thereby creating the micro-environment
resulting in (iii) DC activation and migration to the
lymphoid tissue, and finally (iv) T-cell priming. The avail-
ability of reconstituted human alveolar and bronchial tis-
sue models makes it possible to assess how easy it is for a
protease to gain access to critical cells of the innate and
adaptive immune responses (e.g., DCs, basophils). There
is substantial evidence that correlates easy access with
allergenicity [40].
There is growing evidence that sensitization through

the skin and the lung is the result of an inflammation re-
action that is driven by both epithelial cells and DCs
[40,46]. Currently, cytokine profiles describing respira-
tory sensitizers (chemicals and proteins) are being eval-
uated. The current status is that cytokine profiles have
been identified that relate to different enzyme activities
(proteases, lipases, amylases), but there is evidence that
a common set of cytokines may exist. For proteases, a



Figure 3 Testing strategy for determining the lung sensitizing capacity and relative potency of proteins.
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specific macrophage colony-stimulating factor seems to
be directly related to the allergenic potential of the pro-
tease. The test also indicates that the family of serine
proteases contains members that differ substantially in
their allergenic potency. This observation was confirmed
by preliminary studies in mice. In addition to the epithe-
lial cytokine profiles, a DC-derived marker gene profile
is under evaluation.
DC activation and migration are the result of a proper

inflammatory response. The Sens-it-iv project has devel-
oped tests addressing these phenomena. DC activation
can be assessed by quantifying the expression levels of
specific markers, such as CD54, CD80, and CD86, or
by describing a CD profile using, e.g., the DotScan ap-
proach. The potential of a protein to trigger cell migra-
tion is assessed in a two-compartment test format [47].
The ultimate test describing the potential of a protein to
cause sensitization is the in vitro T-cell priming assay
[48]. Since this test requires fresh blood samples from
human volunteers, donor-to-donor variability is an im-
portant issue. Nevertheless, it has been shown that the
test can provide useful information about the allergenic
potential of proteins.
Collecting the information related to specific events

known to be important for sensitization is one side of
the story; integrating the data and coming to a conclu-
sion about the relative risk of a protein is the other side.
Table 2 provides an overview of the information that has
been or is in the process of being collected for proteases
(N = 3), amylases (N = 2), and lipases (N = 1). The cur-
rent strategy is to assign weights to the various test
results based primarily on mechanistic considerations.
Thus, the more protease required for disturbing the epi-
thelial barrier (quantified by transepithelial electrical
resistance and viability measurements) or inducing macro-
phage colony-stimulating factor expression, the more
likely it is that it will penetrate and cause sensitization.
The weight for this observation could be defined for ex-
ample by means of the amount of protein required to in-
duce a 50% change in the measured parameter.
It is not clear yet how to interpret partial cross-

reactivity, reduced affinity for specific antibodies, and
small differences between observed T- and B-cell epitopes.
When no cross-reactivity between the benchmark protein
and the novel protein is observed or the identified epi-
topes are identical for both proteins, the message is rather
clear. However, experimental data suggest that epitopes
may differ in 1 or 2 amino acids without loss of affinity
for antibody binding (Roggen, personal communication).
Based on the acquired data, it is obvious that the term
“significant similarity” which is so often used in the
context of the assessment of protein allergenicity still
remains to be defined properly.
The computational, immunochemical and in vitro ap-

proaches are to provide a patchwork of data where each
patch addresses a specific potentially hazardous event. It
is anticipated that an intelligent combination or addition
of these individual hazards will allow a qualified overall
hazard identification of the novel protein as compared
to the benchmark. In order to move from hazard iden-
tification to risk assessment, an in depth knowledge of
the potential in vivo exposure routes as well as exposure



Table 2 Data integration

Enzyme
activity

Variant/
class

In vivo data Computational Innate immune responses Adaptive immune responses

Animal Human B cell T cell Barrier function
(mg/ml)

Cilia beating
(mg/ml)

Recovery Cytokine profile
(mg/ml)

Genomic
profile

DC maturation DC
migration

T cell priming

Protease 1 Animals Epitope lists
available

0.01 0.01 no 0.001 Analysis in
progress

Analysis in
progress

Epitopes
identified

Guinea pig, Rat,
Mouse
Serological data

Overlaps and
differences
identified

2 0.1 0.1 no 0.1

3 10 10 yes 10
Immunochemical
characterizationAmylase A Epitope lists

available
10 10 yes

B No effect No effect –
Overlaps and
differences
identified

Humans

Clinical studies,
Occupational
data

Serological data

Others
(Lipase)
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levels is required. In an occupational setting, such know-
ledge rarely exists. Exposure levels are established by
means of cross-sectional studies among eligible workers
of a production plant. They are interviewed for respira-
tory and allergic symptoms, blood samples are taken to
examine sensitization to enzymes, and a clinical evalua-
tion is performed. In addition, exposure in the plant is
characterized qualitatively, and exposure levels are esti-
mated semi-quantitatively. Finally, workers are classified
into exposure groups with varying exposure profiles to
enzymes, based on frequency, duration, and anticipated
level of exposure [49]. Due to the uncertainty of the ac-
tual exposure levels, no-effect levels are defined empi-
rically on the basis of recorded cases of sensitization at
the production plant and tend to be conservative. These
uncertainties should be taken into consideration when
in vivo human data are used as references during the de-
velopment of in vitro tests and non-animal based testing
strategies.
This summary describes a means to evaluate the risk

of industrial proteins, such as proteases, to cause oc-
cupational sensitization. At this point, the tool is at an
early stage of development and various questions remain
to be answered. Tests addressing the key events of skin
and respiratory sensitization are available. The question
remains whether all of these tests have to be implemen-
ted or if there is a minimal number of (simple) tests that
would be equally predictive. For skin sensitization, there
is increasing evidence that two or three tests addressing
specific innate responses provide a 96% concordance
with the available in vivo data. Could this also be suf-
ficient for assessing novel proteins? It is not yet clear
how the various data should be integrated, nor how the
in vivo information should be used to bridge the gap
between non-animal testing and assessment of human
safety. The weight of each input still has to be estab-
lished. Finally, acquiring sufficient reliable information
about the exposure routes and levels will constitute an
important obstacle for the current strategy to become a
tool for risk assessment and risk management. In spite
of these hurdles, the goal in the near future is to be able
to perform “relative” hazard identification and risk as-
sessment of novel industrial enzymes. Furthermore, it is
believed that the learnings from industrial enzymes will
be helpful in establishing similar testing strategies for
novel food proteins and biopharmaceuticals.

The mouse cholera toxin model in translational testing of
allergenicity of proteins: from in vivo to in vitro
Without doubt, animal models have contributed insight
into the mechanisms of sensitization to food proteins
and development of food allergy. In mouse models, the
mucosal adjuvant cholera toxin (CT) is generally used to
induce allergic sensitization to co-administered proteins
in mice, while feeding the protein alone induces oral to-
lerance. CT induces innate immune changes that trigger
allergen-specific T- and B-cell responses, leading to an
allergic phenotype. These innate immune changes involve
activation of epithelial cells (ECs), intraepithelial lympho-
cytes (IELs), DCs, and induction of co-stimulatory mole-
cules [50-52]. Understanding the mechanisms by which
CT can break mucosal tolerance is of interest as the same
pathways may be playing a role in human food allergy. To
provide a mechanism for allergic sensitization in the intes-
tine, it was hypothesized that molecular stress imposed on
gut epithelial cells, for instance by CT or non-steroidal
anti-inflammatory drugs, is a principal trigger for ECs and
IELs to subsequently activate DCs and T and B cells. To
explore this hypothesis, IELs were isolated from mouse in-
testine and investigated for their interaction with a mouse
intestinal epithelial cell line (MODE-K) and with stem
cell-derived intestinal organoids. The latter consist of epi-
thelial crypts, containing enterocytes, Paneth cells, goblet
cells, and endocrine cells [53]. Co-culture of MODE-K
cells and IELs in the presence of CT results in cytokine se-
cretion of MODE-K, increased degranulation of IELs, and
upregulation of MHC II on both cell types. These in vitro
co-culture systems might contribute to further under-
standing of early mechanisms of sensitization. Together
with specific animal models, such in vitro models may
eventually help to assess allergenicity of novel proteins.
Other experiments have shown that intestinal sensitiza-
tion (using CT) involved the disappearance of IELs in the
intestine, possibly resulting in a loss of tolerogenic signals
in the intestine leading to sensitization. Indeed, fol-
lowing blockade of IELs, allergic sensitization to peanut
was enhanced [51].
To assess allergenicity in vivo, it is important to realize

that, although the principal allergic response in the chol-
era toxin allergy model is driven by CT, the properties of
the administered protein may be even more decisive. In
detailed studies in a peanut allergy mouse model, mech-
anisms of food allergy and anaphylaxis were investigated,
along with the relative contribution of the individual
peanut allergens to clinical food allergic responses. In
three commonly used mouse strains (C3H, C57BL, and
BALB/c), sensitization and challenge induced equal le-
vels of specific IgE, IgG1, and IgG2a [54]. However, mast
cell degranulation and anaphylactic symptoms after sys-
temic challenge with peanut did not correlate. Most inter-
esting was the occurrence of anaphylaxis in the absence of
mucosal mast cell degranulation in C57BL/6 mice. How-
ever, using FcyR knock-out and mast cell-deficient mice,
the anaphylaxis observed in C57BL mice was entirely de-
pendent on FcyR and mast cells. In addition, the reported
anaphylaxis in C57BL mice, unlike in C3H mice, was par-
tially dependent on platelet activating factor (PAF) and
macrophages. This indicates that the allergic cascade,
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leading to clinical manifestations, differs between the
three mouse strains. Moreover, it seems that clinical mani-
festations of food allergy in the mouse are not uniquely
linked to the classical components of the allergic cascade
but may also comprise the “alternative anaphylaxis path-
way,” involving IgG, macrophages, and PAF. This might
explain the pleiomorphic manifestations of food allergy in
the human situation.
In addition, individual peanut allergens were found to

differ significantly in their capacity to sensitize mice,
with Ara h1 inducing the strongest IgE response. Inter-
estingly, as demonstrated previously [55], depending on
the route of provocation, peanut proteins differed even
more in their capacity to cause allergic effector res-
ponses, such as mast cell degranulation and systemic
anaphylaxis. For instance, only Ara h2 and 6 were able
to elicit mast cell degranulation after oral challenge.
In future studies, the mechanism behind the func-
tional differences of individual peanut allergens and
their cross-reactivity on a T cell and antibody level will be
investigated.
Both in vitro and in vivo exposures to allergens in the

context of CT reveal the role of intestinal epithelial cells,
IELs, and DCs during allergic sensitization. In addition,
these findings are relevant to risk assessment of novel
proteins and illustrate the usefulness of mouse food al-
lergy models to examine sensitization and effector re-
sponses to potential allergens at different levels in the
allergic cascade both in vivo and in vitro.

Tools and technologies for immunogenicity and
allergenicity risk management
Introduction of novel protein content has enabled major
advances in the development of a broad range of con-
sumer products, including foods. However, as these prod-
ucts reach the market, entire populations will be exposed
to the novel proteins they contain. Unwanted immune re-
sponses to novel proteins have the potential to cause ser-
ious health problems, as new food allergies could develop.
Managing the risk of allergenicity in protein development
is a complex, bioanalytical challenge to address. A range
of technologies for assessing protein sensitizing potential
have been developed. The aim was to provide tools that
could be used in the earliest stages of product (ingredient,
additive, or biologic) development so that the results ob-
tained could inform future work. The reasoning was that
this would enable a faster, more-cost effective transition
from bench to market. Where products would have to
undergo regulatory approval, the aim was to provide ro-
bust supporting data.
As an example, Humira® (adalimumab), an anti-TNFα

therapeutic antibody employed in autoimmune disease
indications, was investigated. It has been reported in
prospective clinical studies that 28% of patients receiving
the drug develop anti-adalimumab antibodies [56] that
rendered the treatment ineffective. The development of
these anti-drug antibodies is attributable to the presence
of immunogenic T-cell epitope content within adalimu-
mab. The technologies developed by the investigators
allowed the investigation, characterization, and measure-
ment of the impact of this immunogenicity, and their
work with adalimumab suggests how the same method-
ologies could be applied to any novel protein to assess
the likelihood of allergic responses occurring in vivo.
Using blood samples from healthy donors, investigators
measured peptide presentation by HLA-DR with their
mass spectrometry-based ProPresent™ assay. To confirm
these findings, the binding of the identified peptides was
analysed in a physical HLA-peptide binding assay. This
assay, the ProImmune REVEAL® MHC-peptide binding
assay, compares the amount of peptide-associated MHC
present for different combinations of peptide/MHC. An
array of different HLA molecules was tested, covering
over 90% of the global population, so the potential impact
of neo-epitopes across large populations was assessed.
Measurement of CD4+ T-cell proliferation in response

to autologous DCs loaded with test peptides is another
assay optimized for immunogenicity testing. Using these
CD4+ T-cell proliferation assays with an adalimumab-
derived peptide library, it was observed that HLA-DRB1*
01:01-positive donors made responses to several of the
epitopes identified using ProPresent™, providing further
support for the idea that these epitopes contribute to the
immunogenicity observed in patients. The innovations
made in investigating the potential sensitizing properties
of novel proteins at an early stage of their development
hold great promise for the future of allergenicity risk ma-
nagement. Used to inform work on novel proteins, these
techniques could contribute to a future in which allergenic
novel proteins rarely, if ever, enter the food chain.
The BALB/c mouse model of allergy for the assessment of
sensitizing properties of proteins and foods and their
alteration by environmental conditions
The assessment of the allergy risk of a novel protein
mainly focuses on its potential to elicit an allergic reac-
tion in consumers already sensitized to a cross-reacting
protein. However, reliable tests are missing to definitively
predict on their own the potential of novel proteins to
sensitize de novo atopic individuals. Such potential de-
pends on intrinsic characteristics of the protein (e.g., struc-
ture, function, and physicochemical properties) but also
on complex interactions between the genetic background
and physiology of the consumers and environmental
conditions. The impact of extrinsic factors such as the
composition of food matrix, food processing, as well as
the dose, route, and frequency of exposure, is of major
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importance to modulate the potential of a protein to in-
duce sensitization versus tolerance.
Allergic sensitization to food proteins is considered to

result from an impaired development of oral tolerance
or a breakdown in an existing oral tolerance. In this re-
gard, integrated animal models such as the BALB/c
mouse, a Th2 biased responder strain, may provide use-
ful information. Currently, such models are not intended
to be used as routine tests to predict the risk of pre-
disposed humans to develop an allergic reaction in eve-
ryday life conditions, but rather, they are designed to
compare the sensitizing properties of allergenic proteins
in different conditions. They also allow a better under-
standing of the mechanisms that polarize and modulate
the immune response after exposure to a protein indu-
cing either oral tolerance or allergic sensitization.
Experimental sensitization to purified proteins or

whole foods, i.e., cow’s milk (CM) or peanut, is achieved
by intraperitoneal (ip) or intragastric (ig) administration
in the presence of Th2 adjuvants, namely alum, incom-
plete Freund adjuvant (IFA), or CT. Sensitization is qua-
litatively and quantitatively assessed by analysis of the
intensity and specificity of the antibody (i.e., IgE, IgG1,
and IgG2a) responses to the different proteins of the
food and to the different epitopes of each purified al-
lergens. Cytokines produced after reactivation of spleen
cells are also evaluated. Sensitization is further con-
firmed by the analysis of the early phase of the reaction
(e.g., leucotrienes, prostaglandins, histamine production)
and of the mediators and biomarkers (cytokines, eosi-
nophilia) and symptoms of the late phase of the aller-
gic reaction after experimental elicitation of sensitized
animals.
Based on results, BALB/c mice can display similar re-

actions as allergic humans. Ip or ig sensitization with
whole CM or purified CM proteins (CMP), e.g., ß lacto-
globulin (BLG), results in the production of IgE anti-
bodies specific to the same CMPs as in allergic humans
and to the same epitopes on BLG as those identified in
humans [57]. However, the responses may vary greatly
depending on both intrinsic and extrinsic factors.
Influence of the protein’s structure
The structure of BLG used for sensitization and elicit-
ation, i.e., native (where both linear and conformational
epitopes are present) versus denatured (where only lin-
ear epitopes are available), influences the manifestation
appearing during the active phase of the allergic reac-
tion. Two different mechanisms of mast cell activation,
of different intensity, may be triggered. They specifically
involve either peptido-leukotrienes in case of challenge
by native BLG or prostaglandin D2 in case of challenge
by denatured BLG [58].
Influence of the dose of exposure: expression of sensitizing
versus tolerizing properties of BLG
Oral administration of raw CM in appropriate condi-
tions, without adjuvant, to mice that have been previ-
ously ig-sensitized to BLG may only trigger mild clinical
reactions but further enhances sensitization to BLG. It
also results in sensitization against other CMPs such as
α lactalbumin, casein, and lactoferrin that would have
not sensitized naïve mice in similar conditions of admin-
istration. In contrast, a systemic tolerance can be totally
or partially induced by administration of BLG without
adjuvant via the ig route. It prevents further sensitization
to BLG but also to other CMPs after ig administration
of pure BLG or CM in the presence of Th2 adjuvants.
Therefore, depending on the conditions of exposure,
BLG may act either as a sensitizing or a tolerogenic pro-
tein. The underlying mechanisms are likely to be either
1) an increase of the transcellular and paracellular gut
epithelial permeability and development of a local aller-
gic reaction leading to Th2-cell differentiation and spe-
cific response to bystander proteins, or 2) the activation
of BLG-specific T regulatory cells that results in induc-
tion of a pro Treg gut mucosal microenvironment [59].

Influence of the route of administration and the microbial
environment of the allergen
Brief cutaneous exposure to peanut protein extract via
applications on intact skin potentiates the gastrointesti-
nal sensitizing properties of peanut allergens after subse-
quent ig administration in the presence of CT. However,
this impact on sensitizing potency is much decreased
when skin applications are made in the presence of mi-
crobial immunostimulatory (e.g., CpG) sequences [60].
The influence of the microbial environment of the pro-
tein is also demonstrated when using lactic acid bacteria
(LAB) as a vector for in situ delivery of the allergen. Pre-
treatment of mice by oral administration of recombinant
LAB producing BLG, before ip sensitization to BLG in
the presence of IFA, results in a decrease of anti-BLG
IgG1 antibody response, a decrease of IL5, and increase
of IFNγ production by reactivated spleen cells, and thus
prevents the mice from a subsequent sensitization by in-
duction of a moderate Th1-type response counterbalancing
the Th2 one. Administration of non-recombinant LAB did
not demonstrate a significant preventive effect [61].

Influence of the gut microbiota
The gut microbiota interacts with the host, the food,
and the environment (including the microbial environ-
ment). It takes part in the digestive processes of the food
proteins and also acts on gut mucosal permeability and
on the stimulation and maturation of the gut immune
system. The influence of the gut microbiota on the sen-
sitizing property of a food protein has been studied on
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germ free (GF) versus conventional BALB/c mice. Effect-
ive sensitization can be achieved with production of spe-
cific IgE antibodies and secretion of IL 5 by spleen cells
after ip administration of BLG in the absence of adjuvant
to GF BALB/c mice, whereas no such response is ob-
served in conventional mice. After ip sensitization in the
presence of IFA, the Th2 response is earlier, more in-
tense, and more persistent in GF than in conventional
mice [62].
It can be concluded that sensitizing properties of pro-

teins result from intrinsic, structural, and physicochemi-
cal properties of the protein that interact with the host
genetics and physiology and with environmental condi-
tions. To study such interactions, including the role of
the gut microbiota which is at the interface of those fac-
tors, the BALB/c mouse provides a useful integrative
model, which may reproduce some aspects of the sit-
uations observed in allergic humans and allows the
investigation of the underlying mechanisms of allergy
development. Among others, extrinsic factors such as
the dose, route, and mode of administration, but also the
presentation and the environment of the protein, influ-
ence the polarization of the immune response toward a
Th1-, Th2-, Th17-, or a Treg-type response and its in-
tensity, and thus modulate the sensitizing potency of
proteins leading either to oral tolerance or to allergic
reaction.

The Brown Norway rat model to assess the oral
sensitizing properties of food proteins
Animal models to study the sensitizing potential of new
proteins should satisfy several important criteria [63,64].
These criteria are not easy to meet all in one model. Se-
lection of species and strain, age, route, and dose of ex-
posure for sensitization and challenge, as well as the use
of adjuvants, are important criteria to consider. For the
evaluation of the intrinsic potential of new food proteins
to induce an allergic sensitization, oral application was
preferred in the studies. An oral sensitization protocol
using Brown Norway (BN) rats was developed based on
comparative sensitization studies performed using differ-
ent strains of rats [65]. Daily ig administration of 1 mg
OVA during 42 days, without the use of adjuvants, was
found to be the most optimal protocol [66]. It resulted
in OVA-specific IgG, as well as OVA-specific IgE, re-
sponses in almost all rats (80%) as measured by ELISA
and passive cutaneous anaphylaxis (PCA). The absence
of detectable OVA-specific IgE responses in some rats
was hypothesized to result from tolerance development
due to dietary pre-exposure of the rats to OVA. Subse-
quent studies indeed supported that unintended dietary
pre-exposure of the rats or their parental generations to
soy [67] or peanut [68] seriously reduced oral sensiti-
zation with these respective food proteins or cross-
reacting proteins (e.g., dietary elimination of soy in case
of sensitization to peanut proteins). In the BN rat food
allergy model, oral challenge reactions were also investi-
gated [69]. In OVA-sensitized BN rats, it was shown that
on an oral challenge with OVA, gut permeability was in-
creased as evidenced by an increased uptake of a bystan-
der protein (α-LG). However, no clear systemic effects
on respiratory functions (e.g., decreased respiratory fre-
quency) and systolic blood pressure were observed, as
only a minority of the challenged animals were affected.
Although under the performed test conditions, the oral
challenge with OVA induced only minor effects on the
respiratory system or blood pressure in a minority of an-
imals, this low incidence is considered to be in accord-
ance with clinical practice in food allergic patients. In
subsequent studies with BN rats, the sensitizing poten-
tial of hen's egg white (HEW), CM, [70] and crude raw
and roasted peanut extracts were studied [71]. Although
antigen-specific IgG responses were found on daily gav-
age dosing of the animals to different concentrations of
HEW or CM, only a limited number of IgE responders
were observed as measured by PCA. However, immuno-
blotting experiments with these rat sera demonstrated
specific-IgE antibodies against both HEW-proteins and
CM-proteins [70]. Moreover, both IgG and IgE anti-
bodies present in sera of orally sensitized rats to HEW
or CM and in sera of HEW- or CM-allergic patients rec-
ognized a comparable profile of allergens in these food
products. These results indicate that the specific protein
recognition of induced antibodies in the BN rat is com-
parable to that observed in sera from allergic patients
[70]. In respect to the sensitizing potency of crude-raw
and roasted peanut protein extracts, as measured by the
Th2-mediated IgG2a production, no clear difference was
observed, and only a limited number of rats were IgE
positive as measured by PCA. A remarkable observation
was made when the IgG2a responses of orally and intra-
peritoneally sensitized animals with peanut proteins
were measured against the three purified major peanut
allergens Arah1, Arah2, and Arah3. After oral
sensitization, IgG2a antibodies were directed against all
three major peanut allergens, whereas after ip
sensitization IgG2a antibodies were mainly directed to-
wards Arah2 [68,71].
The allergenicity of several purified weak- (Sol t1 from

potato), strong- (Ara h1 from peanut and Pen a1 from
shrimp), and non-allergenic proteins (beef tropomyosin)
were studied in the BN rat on oral and ip application at
different dose levels and with or without the use of ad-
juvant [72]. The most robust responses on oral dosing
were observed with the highest protein dose tested
(1 mg/kg/day for 42 days), and the use of an oral ad-
juvant (cholera toxin) did not increase the sensitivity
of the model. The prevalence of positive IgE antigen-



Ladics et al. Clinical and Translational Allergy 2014, 4:13 Page 13 of 18
http://www.ctajournal.com/content/4/1/13
specific ELISA results from the orally sensitized rats was
similar to the prevalence expected from the human
population (based on challenge reactions to these pro-
teins), with Ara h1 > Pen a1 > Sol t1 and beef tropo-
myosin being negative. The experiments to assess the
relative allergenicity of the various purified proteins were
conducted in duplicate, and remarkable differences were
observed in response in these two experiments, which
were probably due to differences in genetics, diets, and
other factors. The animals used in these studies were ob-
tained from two different suppliers and raised on dif-
ferent diets (both containing soybean, corn, and wheat
as principal components, and one diet also containing
fish meal). The results obtained emphasize again the
importance of dietary control and genetic differences of
the animals when oral sensitization studies need to be
performed. In a separate unpublished study (Knippels,
Koppelman and Penninks, personal communication), the
allergenicity of the potent allergen from Brazil nut, e.g.,
2S albumin (Ber e1), and a reduced and alkylated 2S al-
bumin (RA-2S albumin, the loss of disulfide bridges re-
sulted in reduced digestive stability) were tested in the
BN rat model. On daily gavage administration of 1 mg/kg
for 42 days, 70% of the animals developed Ber e1-specific
IgG antibodies, and 50% of the animals developed Ber e1-
specific IgE antibodies. The animals sensitized with the
RA-2S albumin only developed IgG antibodies and no
RA-2S albumin specific IgE.
In conclusion, the results obtained to date indicate

that the BN rat may be a useful and predictive animal
model to study the potential oral allergenicity of “novel”
food proteins. However, additional testing with either
whole foods or with purified non-, weak-, and strong-
allergenic proteins are needed to further validate the BN
rat model. In addition, special attention should be given
to the animal diets, which should be free of the test pro-
tein (or cross-reacting proteins with the test protein) for
at least two generations in order to prevent the develop-
ment of oral tolerance to the test protein.
Limitations and possibilities of animal models for human
allergenic risk evaluation
There are many unanswered questions relating to food
allergy sensitization in humans. It is not known i) in
what situations sensitization takes place, i.e., contri-
bution of different routes (oral, dermal, respiratory); ii)
dose-response relationships; iii) influence of frequency of
exposure; iv) role of digestion; v) role of infection; and
vi) by-stander effects of other allergens. In addition, it is
not known under what conditions oral tolerance de-
velops. With all these unanswered questions, it is a sig-
nificant challenge to develop an animal model that, with
relatively few animals, is able to predict if a protein is
not only a potential allergen but also can predict its po-
tency, a prerequisite for risk evaluation.
One of the pitfalls may be the premise that an animal

model needs to mimic the disease. Chemical contact sen-
sitizers may be predicted in an animal test, the Local
Lymph Node Assay (LLNA) [73]. This assay is based on
detailed mechanistic knowledge of contact sensitization,
including knowledge of the dose-response relationship.
The outcome of the test is sensitization measured as cell
proliferation in the regional lymph node. Here the end-
point is not clinical symptoms but biomarkers of sen-
sitization, and the design is based on detailed knowledge
about the mechanisms behind contact sensitization.
As apparent from the above discussion, there is a lack

of detailed knowledge on the mechanisms leading to
food allergy enabling the design of a mechanism-based
food allergy test. Nevertheless, animal models are used
in food allergy research to understand food allergens
and food allergy sensitization. In general, two sensiti-
zation protocols are used: ip or oral dosing regimens
with or without the use of adjuvant. Adjuvants may in-
crease the immune response for both ip and oral immu-
nizations, but are generally not needed for ip studies.
While the use of cholera toxin is a prerequisite for indu-
cing a specific IgE response in oral mouse models, BN
rats may be used for oral studies without the use of ad-
juvant. How or if adjuvants change the functionality of
the antibody response is not well described.
Depending on the questions needing to be answered,

different sensitization protocols may be used. If one
wants to know if an unknown protein is a potential food
allergen sensitizing via the gastrointestinal tract, it is im-
portant to use a model that includes the GI tract. It is
also important not only to measure IgE, but also to
measure the functionality of the IgE response. This can
be done in vitro measuring degranulation of rat baso-
philic leukemia cells (RBL assay) or in vivo by PCA. It is
mandatory that the animals are on a diet free from the
protein under investigation or cross-reacting allergens to
get a valid answer [74].
The lack of dose-response knowledge in food allergy

makes it difficult to interpret the results in a risk assess-
ment context. If a protein in food induces a specific
functional IgE response by the oral route, one can con-
clude that there is a hazard connected to the given pro-
tein. However, this does not provide information about
the dose-response relationship. Most food allergens are
major constituents of their “parent” food, but as the rela-
tionship between dose and sensitization (the shape of
the dose-response curve) is unknown, this knowledge is
difficult to include in the risk assessment. It is currently
not possible to include dose-response relationships in
the interpretation of sensitization studies, and it is,
therefore, not possible to characterize the risk. Figure 4
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Figure 4 Model example: specific IgG1 and IgE measured by direct and capture ELISA, respectively, after oral doing of Brown Norway
rats for 35 days without adjuvant with two related proteins.
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shows a model example, the results of oral dosing of BN
rats for 35 consecutive days with two related proteins.
Protein A gives the highest immune response, both IgG1
and IgE, and the response is dose-related. With protein
B there is no dose-response, but there is a response in
the low dose. Which of these proteins is the strongest
food allergen? With current knowledge, this question
cannot be answered.
How then can/should animal models be used for hu-

man allergenic risk evaluation? Animal models in food
allergy can be used to increase understanding of food al-
lergens and food allergy sensitization, e.g., the influence
of digestion or processing or to compare closely related
allergens. When using purified allergens it may be diffi-
cult to have a sufficient amount of allergen to perform
oral studies. Intra-peritoneal dosing of BN rats has been
used to compare the allergenicity of intact and digested
Ara h 1, showing that digestion products of the 7S
globulin Ara h 1 have similar allergenicity as the parent
protein, being able to sensitize by the ip route and de-
granulate RBL cells [75]. Also, closely related 7S globu-
lins from different plants have been compared. These
proteins were readily digested and had similar digestion
profiles. For these reasons, it is viewed as not optimal,
but acceptable, to compare the intrinsic allergenicity
of such purified proteins by the ip route. Investigators
showed that the related 7S proteins induced an IgE
response of the same magnitude, but the functionality
of IgE induced by Ara h 1 was significantly higher com-
pared to IgE induced by 7S globulins from pea, soy, and
hazelnut [74]. Using the oral route makes it possible to
study the influence of matrix and processing on allerge-
nicity. Using oral dosing with peanut products, it has been
shown that although extract of roasted peanuts is the
most efficient elicitor of RBL cell degranulation, roasted
peanut or peanut butter made from roasted peanuts are
not better sensitizers than blanched (mildly heated) pea-
nuts (unpublished observations).
In conclusion, the current lack of mechanistic know-

ledge of the sensitization process in food allergy makes
it difficult to design and interpret predictive animal mo-
dels. However, by using carefully designed studies, it is
possible to use animal models to increase knowledge
about the different factors influencing sensitization of
known allergens.

Conclusions: predicting allergenicity of new proteins
A number of foods containing GM crops have been in-
troduced to the marketplace. These products have been
carefully evaluated for their overall safety from an ag-
ronomic, environmental, performance, and equivalence
perspective. Furthermore, studies have confirmed the
safety of the GM crops and the novel protein(s) associa-
ted with the new trait(s).
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One aspect of the novel protein safety evaluation is
the question concerning their potential allergenicity. The
allergenicity risk to consumers from GM crops may be
placed into one of three categories.
The first risk category involves the transfer of a known

allergen or cross-reacting allergen into a food crop. This
risk is addressed by performing bioinformatics searches
in order to show that the protein of interest does not
match a known allergen [76].
The second risk category involves expression of pro-

teins that may become de novo allergens. This risk has
been studied by using various non-validated animal mo-
dels, which have been developed over the past 15 years,
including the well-known models described in Ladics
et al. [72] and new experimental results observed in rat
or mouse models described earlier in this paper. Although
several promising tests have been proposed, none of them
has been recognized as the ideal model for predicting the
sensitization potential of proteins. In summary, the panel
of scientific experts at the 2012 symposium agreed that no
validated animal model that is predictive of protein aller-
genicity is currently available today.
The third risk category (though not within the scope

of this paper) is the potential for increasing the allergen-
icity of an already allergic crop (e.g., soybean) by increas-
ing the expression of endogenous allergens.
In conclusion, the evaluation of protein allergenicity

is currently based on a “weight-of-evidence” approach,
which takes into account a variety of factors that have
been associated with allergens, such as amino acid se-
quence identity to known allergens, stability to pepsin
digestion or other enzymes in vitro, protein abundance
in the crop, and the history of safe use of the source of
the gene [20]. Animal models have been proposed for
the safety assessment of novel proteins such as those
expressed in GM crops; they may prove useful in the fu-
ture but need further development and validation to im-
prove their sensitivity and specificity.

Discussion
GM food crops undergo an extensive safety assessment
that has a record of producing safe consumer products.
In fact, since the first GM crops were marketed in the
mid-1990s, there have been no reports of any adverse ef-
fects associated with them. As part of the safety evaluation
for GM crops, an allergenicity assessment is performed
[20]. This assessment has several purposes: 1) to ensure
that an existing allergen or cross-reactive protein(s) is not
transferred into a new GM crop; 2) to demonstrate that a
novel protein is unlikely to become a food allergen de
novo; and 3) to evaluate existing endogenous allergen
levels for potential increases in the new GM crop (i.e., soy-
bean) versus its non-GM control [77]. To help address the
second issue, a number of investigators have examined the
use of in silico, in vitro and in vivo methods to help pre-
dict the sensitization potential of novel proteins de novo.
In particular, a promising process for assessing the risk of
industrial proteins (e.g., proteases) to cause respiratory
sensitization in an occupational setting was described.
This approach, however, is in the early stages of deve-
lopment and needs further evaluation with additional
proteins. Likewise, in vitro models utilizing the co-
culture of the MODE-K cell line or stem-cell derived in-
testinal organoids and IELs, or the ProImmune REVEAL®
MHC-peptide binding assay on further development and
validation, may hold promise for the future of allergenicity
risk assessment. Some symposium participants have also
been working on the development of models for predict-
ing or ranking the potential allergenicity of food proteins
in rats and mice that evaluate different endpoints, routes
of exposure, and dosing regimens. A sensitive and specific
validated animal model would help in the identification of
proteins that might present an increased risk of sensitizing
consumers if introduced in a GM food crop. While some
progress has been reported with a limited number of pro-
teins, none of the animal models that have been reviewed
here have been thoroughly tested and validated with a
wide range of allergens and non-allergens. To be consid-
ered predictive, the animal model should identify the aller-
genicity of a high percentage of known allergenic proteins
and also predict low or no allergenic activity for the
majority of currently consumed, low-, or non-allergenic
proteins [72]. Even today, different mouse strains show
different sensitization responses, which limit the ability to
standardize a single model. While some models appear
promising (i.e., either in silico, in vitro, or in vivo), they
need to be widely tested to be shown as predictive.
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