

### **ORAL PRESENTATION**

**Open Access** 

# Immunoglobulin E and G4 epitopes of the major allergen of birch pollen Bet v 1 share residues critical for antibody binding

N Groh<sup>1</sup>, B Subbarayal<sup>2</sup>, L Vogel<sup>1</sup>, C Möbs<sup>3</sup>, NW de Jong<sup>4</sup>, W Pfützner<sup>3</sup>, RG van Wijk<sup>4</sup>, J Lidholm<sup>5</sup>, L Meisel<sup>1</sup>, S Randow<sup>1</sup>, T Holzhauser<sup>1</sup>, B Bohle<sup>2</sup>, S Vieths<sup>1</sup>, D Schiller<sup>1\*</sup>

From Food Allergy and Anaphylaxis Meeting (FAAM 2013) Nice, France. 7-9 February 2013

#### **Background**

Millions of patients with allergy to birch pollen develop clinically cross-reactive IgE against Bet v 1-like proteins in plant foods. Specific immunotherapy (SIT) with birch pollen extracts induces the biosynthesis of Bet v 1-specific immunoglobulin (Ig)G $_4$ . IgG $_4$  is believed to act as a blocking antibody preventing IgE binding to Bet v 1, thus alleviating allergic symptoms. Only little information on the location and relationship of IgE and IgG $_4$  binding sites of Bet v 1 is available. In this study we seek to identify epitopes of IgE and IgG $_4$  antibodies on Bet v 1.

#### Methods

A competitive immunoscreening of phage-displayed peptides was applied to predict Bet v 1 epitopes of allergen-specific IgE and Ig $G_4$  antibodies by bioinformatic means. Predicted epitope residues potentially critical for antibody binding were substituted by site-directed mutagenesis. Recombinant Bet v 1 (rBet v 1) and rBet v 1 variants were purified from *Escherichia coli*. The proteins were physicochemically characterized using circular dichroism (CD) and dynamic light scattering. To test the IgE and Ig $G_4$  interactions with rBet v 1 variants, western blot analyses, ELISA, and cellular mediator release assays were performed.

#### Results

Several rBet v 1 variants were expressed in *E. coli*. Circular dichroism and structural modeling of the variants revealed Bet v 1-like theoretical secondary structure topology. The rBet v 1 variants showed reduced IgE and  $IgG_4$  binding with sera of birch pollen allergic subjects in western blot analyses and competitive ELISAs. The rBet v 1 variants showed decreased IgE-mediated mediator release in humanized rat basophil leukemia cells sensitized with sera of birch pollen allergic subjects.

#### **Conclusion**

We identified critical residues in IgE and  $IgG_4$ epitopes of Bet v 1. Although patient-specific variability was observed, the antibody interactions of the respective rBet v 1 variants were compromised for both IgE and  $IgG_4$ , respectively. We conclude that epitopes for IgE and  $IgG_4$  share common residues critical for antibody interaction, suggesting an overlap of IgE and  $IgG_4$ -binding sites on the molecular surface of Bet v 1. The knowledge of clinically relevant immunoglobulin-allergen interactions on the molecular level enables new strategies in the diagnosis, prognosis, and therapy of both birch pollen allergies and birch pollen-related food allergies.





#### **Disclosure of interest**

None declared.

#### **Author details**

<sup>1</sup>Division of Allergology, Paul-Ehrlich-Institut, Langen, Germany. <sup>2</sup>Pathophysiology and Allergy Research and Christian Doppler Laboratory for Immunomodulation, Medical University of Vienna, Vienna, Austria. <sup>3</sup>Department of Dermatology and Allergology, Philipps University Marburg, Marburg, Germany. <sup>4</sup>Department of Allergology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands. <sup>5</sup>Thermo Fisher Scientific, Uppsala, Sweden.

Published: 25 July 2013

#### doi:10.1186/2045-7022-3-S3-O15

Cite this article as: Groh *et al.*: Immunoglobulin E and G4 epitopes of the major allergen of birch pollen Bet v 1 share residues critical for antibody binding. *Clinical and Translational Allergy* 2013 **3**(Suppl 3):O15.

## Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit

