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Abstract 

Background:  Fungal and bacterial microbiota play an important role in development of asthma. We aim to charac-
terize airway microbiome (mycobiome, bacteriome) and functional genes in asthmatics and controls.

Methods:  Sputum microbiome of controls, untreated asthma patients and inhaled corticosteroid (ICS) receiving 
patients was detected using high throughput sequencing. Metagenomic sequencing was used to examine the func-
tional genes of microbiome.

Results:  1. Mycobiome: α diversity was lower in untreated asthma group than that in controls. Mycobiome compo-
sitions differed among the three groups. Compared with controls, untreated asthma group has higher abundance 
of Wallemia, Mortierella and Fusarium. Compared with untreated asthma patients, ICS receiving patients has higher 
abundance of Fusarium and Mortierella, lower frequency of Wallemia, Alternaria and Aspergillus. 2. Bacteriome: α 
diversity was lower in untreated asthma group than that in controls. There are some overlaps of bacteriome composi-
tions between controls and untreated asthma patients which were distinct from ICS receiving patients. Untreated 
asthma group has higher Streptococcus than controls. 3. Potential fungal and bacterial biomarkers of asthma: Tram-
etes, Aspergillus, Streptococcus, Gemella, Neisseria, etc. 4. Correlation network: There are dense and homogenous 
correlations in controls but a dramatically unbalanced network in untreated asthma and ICS receiving patients, which 
suggested the existence of disease-specific inter-kingdom and intra-kingdom alterations. 5. Metagenomic analysis: 
functional pathways were associated with the status of asthma, microbiome and functional genes showed different 
correlations in different environment.

Conclusion:  We showed mycobiome and bacteriome dysbiosis in asthma featured by alterations in biodiversity, 
community composition, inter-kingdom and intra-kingdom network. We also observed several functional genes 
associated with asthma.
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Introduction
Asthma is a heterogeneous disease as a result of complex 
interactions between genetic and environmental factors 
[1], the definite mechanisms of susceptibility to certain 
clinicopathological features of the disease remain to be 
further delineated. Recently, two lines of evidence: dys-
biosis of airway microbiome in the context of bacteria 
through 16S rRNA gene sequencing indicated in asthma 
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patients [2, 3], and enhanced inflammatory responses in 
the absence of microbial colonization (germ free) in air-
ways and intestinal tract in animal models [4, 5], drove 
researchers to propose the significant role of microbiome 
and its metabolic function in the incidence of asthma.

Healthy human airways, historically presumed as ster-
ile, were recently reported to be composed of bacteria 
(predominant Proteobacteria, Firmicutes and Bacteroi-
detes), fungi and virus based on culture-independent 
molecular methods [6]. The paramount impact of micro-
biome on asthma could be implied by the early evidence 
of the development of asthma due to microbial coloniza-
tion of distinct specific bacteria in the airways, such as 
Haemophilus, Moraxella, and Streptococcus [7–9]. Air-
way bacterial microbiota (bacteriome) was demonstrated 
to correlate with severity of airways obstruction, airway 
inflammation [10], bronchial hyperresponsiveness [11] 
and corticosteroid resistance [12] in asthma. However, 
until now, altered composition of airway fungal micro-
biota (mycobiome) in subjects suffering from asthma 
and its relation to clinical features is unclear. Except for 
the confirmation of significant abundance of Aspergil-
lus in asthmatic patients and its positive association 
with impaired post-bronchodilator expiratory volume in 
1 s based on conventional culture-method [13, 14], only 
Sharma et  al. identified airway mycobiome in asthma, 
they explored the fungal diversity and features in endo-
bronchial brush (EB) and bronchoalveolar lavage (BAL) 
samples from different inflammation phenotypes [15]. 
These results invited the speculation that, in addition to 
disturbance of bacteriome in unremittingly quiescent 
balanced lung microbiome, variations of community 
composition in mycobiome are also of vital importance 
in human susceptibility to asthma.

Here we sought to characterize airway microbiome 
(mycobiome, bacteriome) and their functional genes 
in healthy controls, untreated asthma patients and ICS 
receiving asthmatic patients, the study also aimed to 
identify bacterial-fungal correlations in these groups.

Materials and methods
Subjects
Chronic asthmatic patients were recruited from the 
Respiratory Outpatient Department, Ruijin Hospi-
tal, Shanghai Jiao Tong University School of Medicine, 
from October 2018 to July 2019. ICS is a standard treat-
ment for asthma, we included both untreated asthma 
patients and ICS receiving patients. Diagnosis of asthma 
was established based on current episodic respiratory 
symptoms and evidence of variable airflow obstruc-
tion: forced expiratory volume in the first second (FEV1) 
improvement ≥ 12% and 200  mL after albuterol [16]. 
Individuals with acute attack, smoking history, diabetes, 

cancer, autoimmune diseases, and infectious diseases 
were excluded. Healthy control donors who were free of 
smoking, any respiratory symptoms and had normal lung 
function served as control subjects. All the subjects could 
be divided into three subgroups: Healthy controls (CON 
group), untreated asthma patients (untreated asthma 
group), patients receiving ICS (ICS asthma group). All 
the subjects were not treated with antibiotics or systemic 
glucocorticoids within 1 month before the study and they 
did not receive immunosuppressive agents or immuno-
therapy. We note that it’s difficult to induce sputum in 
some subjects, especially in healthy controls, these sub-
jects were excluded, therefore, the sample size is rela-
tively small.

The demographic data were recorded, including age, 
sex, body mass index (BMI), history of rhinosinusitis, 
smoking history, ICS dose, percentage of sputum eosin-
ophils (EOS%) and neutrophils (NEU%), FEV1 percent 
predicted (FEV1% pre), FEV1/forced vital capacity per-
centage (FEV1/FVC), duration of asthma and Asthma 
Control Questionnaire 7 score (ACQ7 score).

Ethics statement
The study was approved by the Ethics Committee of Rui-
jin Hospital (number: 2019-73). Written informed con-
sent was obtained from individual subjects enrolled in 
this study after account of benefits and risks. All proce-
dures were performed in accordance with the Declara-
tion of Helsinki.

Sample collection
Sputum was produced after induction by hypertonic 
saline nebulization, as previously described [17]. Sam-
ples for cell differential counts were stored at room tem-
perature, those for DNA extraction were transported 
into sterile tubes and frozen immediately with dry ice 
and then stored at − 80  °C prior to analyses. Blood 
was collected and serum was stored at − 80  °C for IgE 
measurement.

Sputum processing
Briefly, the sputum was weighed and freshly prepared 
0.1% solution of dithiothreitol (DTT) was added, then the 
mixture was vortexed for 15 min. After filtration through 
two layers of a sterile gauze the sputum was centrifuged 
for 10  min at 800  g. Supernatants were collected and 
stored at − 80  °C for interleukin measurements, includ-
ing interleukin 4 (IL-4), IL-5, IL-6, tumor necrosis factor 
α (TNF-α).

DNA extraction
DNA in sputum samples were extracted using the 
QIAamp DNA Microbiome Kit (Qiagen, Hilden, 
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Germany, 51704) according to the manufacturer’s 
instructions, then DNA samples were stored at − 20 °C.

Sequencing of 16S ribosomal RNA/internal transcribed 
spacer (16S rRNA/ITS) gene amplicon
The 16S rRNA and ITS genes were amplified and purified 
to prepare a library for sequencing at Majorbio (Shang-
hai, China) by using Illumina Miseq system. Operational 
Taxonomic Units (OTUs) was used to analyze sequenc-
ing data based on sequence similarity. An OTU is an 
organizational proxy of species produced by clustering 
using the UPARSE algorithm with > 97% sequence simi-
larity [18]. In order to compare the community com-
position of each sample in each taxonomic level, each 
OTU was taxonomically classified against the SILVA and 
UNITE databases using RDP Classifier which provides 
taxonomic assignments from domain to genus.  Details 
are provided in Additional file 1.

Metagenomic sequencing
Extracted DNA was exposed to metagenomic sequenc-
ing. Functional annotations were performed by BLASTP 
against Kyoto Encyclopedia of Genes and Genomes 
(KEGG) databases to predict the gene function in corre-
sponding pathways. Details on sequencing are provided 
in Additional file 1.

Statistical analyses
α (difference within a sample) diversity included rich-
ness (Chao and Ace indices) and diversity (Shannon 
and Simpson indices, Phylogenetic diversity). Chao and 
Ace indices mean the total number of unique OTUs 
detected, Shannon and Simpson indices indicate the 
diversity and evenness (relative distribution) of OTUs in 
samples, Phylogenetic diversity, apart from diversity and 
evenness, it additionally accounts for phylogenetic rela-
tionships. Dimension reduction analysis by supervised 
sparse partial-least squares discriminant analysis (sPLS-
DA) and Permutational Multivariate Analysis of Vari-
ance (PERMANOVA) testing was applied to figure out 
whether the microbiome composition was significantly 
different between different groups. Linear discriminant 
analysis (LDA) effect size (LEfSe) analysis, a method 
for biomarker discovery, was used to identify differen-
tially abundant bacterial taxa or fungi that best charac-
terize the populations of these groups. LDA score > 2 
and P < 0.05 were considered to be significants. Random 
Forest (RF) classifier in R package (version. 3.6.2) was 
utilized to identify biomarker associated with asthma. 
Differences between groups were identified using the 
Kruskal–Wallis rank-sum test in R. Corrections were 
made using the False Discovery Rate multiple testing 

correction. Results were considered statistically signifi-
cant for p-values ≤ 0.05. Details are provided in Addi-
tional file 1.

Results
Airway mycobiome
In this part, after filtering for low-quality reads and 
eliminating reads that did not match barcode sequences, 
specimens from 68 subjects were obtained for air-
way mycobiome evaluation, including CON (n = 16), 
untreated asthma (n = 22) and ICS asthma (n = 30) 
groups. Demographic characteristics of study sub-
jects were summarized in Additional file 2: Table S1. As 
expected, people with rhinosinusitis are more likely to 
develop asthma, and significant differences in lung func-
tion were detected, as assessed by both FEV1% pre and 
FEV1/FVC. ICS asthma group had a longer duration of 
asthma than untreated asthma group (Additional file  2: 
Table S1).

Taxonomic characterization of mycobiome
We calculated the within-sample (α) diversity, Ace and 
Chao indices showed that richness of sputum mycobi-
ome in untreated asthma group was significantly lower 
than that in CON group (Fig. 1a, b). The diversity (Shan-
non and Simpson indices) did not show any differences 
between these two groups, while Phylogenetic diversity 
(PD), weighting the phylogenetic relatedness of the fungi 
detected, showed less phylogenetically diverse fungal 
communities in untreated asthma group than that in 
CON group (Fig.  1c, e). However, analysis with a range 
of alternative α diversity indices (Ace, Chao, Shannon, 
Simpson and PD indices) resulted the only difference 
in Shannon index between untreated asthma and ICS 
asthma groups, the later had lower diversity compared 
with untreated asthma group (Fig. 1a–e).

There were positive correlations between FEV1%pre 
and Chao (r = 0.35, P < 0.01), Ace (r = 0.33, P < 0.01), and 
PD indices (r = 0.31, P = 0.01) (Additional file  3: Fig. 
S1). Chao index demonstrated an inverse relationship to 
ACQ7 score in asthmatic patients (r = − 0.28, P < 0.05) 
(Additional file  3: Fig S1). These results suggested that 
lower fungal richness in general is associated with worse 
lung function and worse asthma control.

Dimension reduction analysis by supervised sparse 
partial-least squares discriminant analysis (sPLS-DA) 
showed community compositions were clearly distinct 
among the three groups (PERMANOVA test P = 0.001) 
(Fig. 1f; Additional file 4: Table S2). At the phylum level, 
airway mycobiome among all groups exhibited predomi-
nant Ascomycota (66.17%), to a lesser extent Basidiomy-
cota (21.48%), followed by unclassified_k__Fungi (9.16%) 
and Mortierellomycota (2.36%) (Additional file  5: Fig 



Page 4 of 13Huang et al. Clin Transl Allergy           (2020) 10:42 

S2). At the genus level, the prevalent fungi were Can-
dida (9.49%), unclassified_k__Fungi (9.16%), Wallemia 
(8.41%), Alternaria (8.34%), Aspergillus (5.7%), Clad-
osporium (5.56%) (Additional file 5: Fig S2).

Next we compared the relative abundances of genera 
between untreated asthma patients and controls. The top 
15 significantly different genera were showed in Fig. 2: 10 
genera were enriched in untreated asthma group, includ-
ing Wallemia, Mortierella, Fusarium, unclassified_f_
Chaetomiaceae, Phialophora, Metarhizium, 
unclassified_f_Sporormiaceae, Irpex, Schizophyllum, 
Rhodotorula, while 5 genera were reduced in untreated 
asthma group, including unclassified_f_Sclerotiniaceae, 
Mycosphaerella, Sporobolomyces, Trametes, Nagan-
ishia (Fig. 2a; Additional file 6: Table S3). To explore the 
effect of ICS on airway mycobiome community, we cal-
culated the abundance of genera in ICS asthma group 
and untreated asthma group. Among the top 15 signifi-
cantly different genera, 8 genera were increased in ICS 
asthma group, including unclassified_k_Fungi, Fusarium, 
Mortierella, Phialemoniopsis, unclassified_f_Chaeto-
miaceae, Phialophora, Sistotrema, unclassified_f_
Sporormiaceae. By contrast, 7 genera were reduced in 
ICS asthma group, including Wallemia, Alternaria and 
Aspergillus, unclassified_f_Sclerotiniaceae, Guehomyces, 

Sporobolomyces, Coprinellus (Fig.  2b; Additional file  7: 
Table S4).

Unique biomarkers detected in airway mycobiome
To further investigate the most important features more 
likely to explain the differences between the status of 
asthma and healthy conditions (untreated asthma vs 
CON), classification accuracy through Random Forest 
(RF) classifier with tenfold cross-validation was utilized 
to identify the features that contributed the most to the 
difference between CON and untreated asthma groups. 
Figure  3a depicts the top 7 important features associ-
ated with the classification when the error rate was the 
lowest: OTU1510 (g_unclassified_k_Fungi), OTU1188 
(g_unclassified_k_Fungi), OTU1155 (g_unclassified_f_
Sclerotiniaceae), OTU881 (g_Trametes), OTU606 
(g_Aspergillus), OTU523 (g_Aspergillus), OTU481(g_
Aspergillus). Using the 7 OTUs as microbiome markers 
to discriminate the untreated asthma group from the 
healthy control group, the area under the receiver oper-
ating characteristic curve (AUC) was 72%, and the 95% 
confidence interval (CI) was 56–89% (Fig. 3b). The abun-
dance of OTU881 (g_Trametes), OTU523 (g_Aspergil-
lus), OTU606 (g_Aspergillus), OTU481(g_Aspergillus) 
and OTU1155 (g_unclassified_f_Sclerotiniaceae) were 

Fig. 1  α and β diversity of the airway mycobiome. a, b Mycobiome richness as indicated by Ace and Chao indices. c–e Shannon, Simpson and PD 
indices. Statistical significance was determined using Kruskal–Wallis rank-sum test. ***p ≤ 0.001, **p ≤ 0.01, *p ≤ 0.05. f sPLS-DA multivariate analysis
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lower in untreated asthma group than CON group, how-
ever, these OTUs increased after ICS medications (ICS 
asthma group) (Fig.  3c). The increased OTU1510 and 
OUT 1188 in untreated asthma group were reduced in 
ICS asthma group, similar levels to CON group (Fig. 3c). 
Together, these results demonstrated a trend for the 
variations of these taxa in untreated asthma patients to 
recover after ICS treatment (ICS asthma group).

Airway bacteriome
82 induced sputum samples from CON (n = 26), 
untreated asthma (n = 23), and ICS asthma (n = 33) 
groups were obtained for 16S rRNA sequencing. Addi-
tional file  8: Table  S5  showed that people with rhinosi-
nusitis are more likely to develop asthma, untreated 
asthma group had lower FEV1% pre and FEV1/FVC com-
pared with CON group. ICS asthma group had a longer 
disease duration and lower ACQ7 score than untreated 
asthma group (Additional file 8: Table S5).

Taxonomic characterization of biome
α diversity indices (Ace, Chao, Shannon and PD indi-
ces) indicated lower richness and less diverse array 
of bacteriome in untreated asthma group than CON 
group (Fig.  4a–e). However, no difference was showed 
in α diversity between untreated asthma and ICS asthma 
group (Fig. 4a–e).

Fig. 2  Relative abundance of top 15 genera in airway mycobiome. 
Significantly differing mycobiome between CON and untreated 
asthma group (a), between untreated asthma group and ICS asthma 
group (b) were shown. Statistical significance was determined using 
Kruskal–Wallis rank-sum test. All p < 0.05

Fig. 3  Biomarkers detected in airway mycobiome and comparisons of these biomarkers. a Prediction models using Random Forest (RF). X-axis 
represents the number of important species (variables) ranking top n, y-axis represents the corresponding prediction error rate using ten-fold cross 
validation (CV). b The Receiver Operating Characteristic (ROC) curve for the random forest model using the 7 OTUs. c The heat map showed the 
relative abundance of these biomarkers (mycobiome) in different groups
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sPLS-DA showed some overlaps of CON and 
untreated asthma groups which were distinct from 
the ICS asthma group (PERMANOVA test P = 0.01) 
(Fig. 4f, Additional file 9: Table S6). At the phylum level, 
bacteria from the phyla Firmicutes (44.9%), Actinobac-
teria (19.32%), Proteobacteria (16.37%) and Fusobacte-
ria (9.26%) were predominant in all groups (Additional 
file 10: Fig S3). At the genus level, the top six bacteria 
were Streptococcus (27.26%), Rothia (12.6%), Neisse-
ria (8.75%), Leptotrichia (6.02%), Actinomyces (5.54%), 
Haemophilus (5.10%) (Additional file 10: Fig S3).

Then we estimated top 15 genera significantly dif-
fering between CON group and untreated asthma 
group, the proportion of dominant Streptococcus was 
increased in untreated asthma group. When compared 
untreated asthma group with ICS asthma group, the 

relative abundances of 2 genera were enriched in ICS 
asthma group, while other 13 genera were reduced 
(Additional file  11: Fig S4; Additional files 12, 13: 
Table S7–S8).

Discriminant bacteria detected in airway bacteriome
To illustrate the potential diagnostic value of key OTUs 
in airway bacteriome for the status of asthma, we also 
used RF in an attempt to detect untreated asthmatic 
samples, but it demonstrated a relatively low clas-
sification accuracy (AUC: 0.61, 95% CI 0.44–0.77) 
(Additional file  14: Fig S5a, b). Therefore, we used 
LEfSe to identify the discriminant taxa enriched in 
different groups (CON vs untreated asthma group, 
untreated asthma vs ICS asthma group) (Additional 
file  14: Fig S5c, d), the consistent OTUs from the two 

Fig. 4  α and β diversity of the airway bacteriome. a, b Bacteriome richness as indicated by Ace and Chao indices. c–e Shannon, Simpson and 
PD indices in each group. Statistical significance was determined using Kruskal–Wallis rank-sum test. ***p ≤ 0.001, **p ≤ 0.01, *p ≤ 0.05. f sPLS-DA 
multivariate analysis. g The heat map showed the relative abundance of these biomarkers (bacteriome) identified by LEfSe in different groups



Page 7 of 13Huang et al. Clin Transl Allergy           (2020) 10:42 	

comparisons were presented in Fig. 4g. Compared with 
CON group, the abundance of OTU2189 (g_Strep-
tococcus), OTU2266 (g_Streptococcus), OTU2255 
(g_Gemella), OTU2198 (g_Neisseria) increased in 
untreated asthma group, however the proportions of 
these OTUs decreased in ICS asthma group. The abun-
dance of OTU347 (g_norank_f_Saccharimonadaceae), 
OTU345 (g_Selenomonas_4), OTU834 (g_Catonella), 
OTU95 (g_Solobacterium), OTU2144 (g_Oribacte-
rium), OTU768 (g_Lachnoanaerobaculum) were lower 
in untreated asthma group than that in CON group, 
which were further increased in ICS asthma group 
(Fig. 4g).

Association between airway microbiome and clinical 
indices
We asked whether mycobiome and bacteriome corre-
lated with clinical indices of asthma based on Spear-
man correlation analysis (Fig. 5). In mycobiome, genus 
Alternaria positively correlated with ICS dose, but 
negatively correlated with BMI. Aspergillus positively 
correlated with ICS dose and disease duration. Mor-
tierella and Phialemoniopsis positively correlated with 
sputum IL-4 and IL-5 levels, while negatively correlated 
with ICS dose (Fig.  5a). In bacteriome, Fusobacterium 
positively correlated with EOS%, Neisseria negatively 

correlated with NEU%. Streptococcus negatively corre-
lated with ICS dose (Fig. 5b).

Fungal‑bacterial correlation in airway microbiome
To demonstrate inter-kingdom and intra-kingdom cor-
relations in asthma, correlation networks derived from 
the airway microbiome dataset involving mycobiome 
or bacteriome at genus level were built to decipher the 
potential role of interaction patterns among different 
taxa in this study (Fig. 6). Samples from CON group had 
a greater density of connections between nodes com-
pared with asthmatic samples. In CON group, myco-
biome and bacteriome diversity was higher (Figs.  1 and 
4), with a network showing positive and negative corre-
lations distributed throughout the nodes. Both positive 
and negative correlations from Firmicutes to Basidiomy-
cota and Proteobacteria, from Proteobacteria to Asco-
mycota were observed. Many positive correlations from 
Basidiomycota to Ascomycota were also observed. In 
addition, many genera within one phylum (Firmicutes, 
Basidiomycota and Ascomycota) connected with each 
other (Fig. 6a). Strikingly, networks in untreated asthma 
and ICS asthma group were dramatically different. Cor-
relations above were decreased in untreated group. Nota-
bly, many negative correlations connecting genera from 
Firmicutes phylum to members of Basidiomycota and 
Proteobacteria phylum, from Proteobacteria phylum to 

Fig. 5  Correlation between airway mycobiome (a), bacteriome (b) and clinical indices of asthma. Correlations were performed based on Spearman 
correlation. Red indicates positive correlation; blue indicates negative correlation. ***p ≤ 0.001, **p ≤ 0.01, *p ≤ 0.05
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Ascomycota phylum were decreased in untreated asthma 
group (Fig.  6). However, these correlations were much 
less in ICS asthma group relative to untreated group. 
There was a negative correlation between Firmicutes 
phylum and Proteobacteria phylum (Fig. 6c).

Taken together, these results suggest a complex rela-
tionship between the bacteria and fungi in airway 
microbiome and that specific alterations of connec-
tions in inter-kingdom and intra-kingdom are present in 
untreated asthma patients and ICS receiving patients.

Comparison of inferred metagenomes
We used MicroPITA (microbiomes: Picking Interest-
ing Taxonomic Abundance) [19] to select the most rep-
resentative samples from previous subjects to perform 
metagenomic sequencing. A total of 15 samples were 
selected from CON (n = 5), untreated asthma group 
(n = 10) respectively for the use of sequencing. On level 
1 (human disease), the abundance of genes related to 
asthma and Toxoplasmosis were higher in untreated 
asthma group than CON group (Additional file  15: Fig. 
S6a). On level 3, the abundance of genes related to Th1 
and Th2 cell differentiation, Vitamin B6 metabolism were 

Fig. 6  Fungal-bacterial network with top 150 genera. Networks in CON (a), untreated asthma (b) and ICS asthma (c) group were performed by 
using Cytoscape. Each circle (node) represents a microbial genus, its colour represents the bacterial or fungal phylum it belongs to and its size 
represents the number of direct edges that it has. The edge colour indicates the magnitude of the distance correlation; green indicates positive 
correlation and red indicates negative correlation (determined using spearman test). Only significant correlations (p value < 0.05 after false discovery 
rate correction) are displayed
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higher in untreated asthma group than CON group, con-
trastingly, the abundance of SNARE interactions in vesic-
ular transport, transforming growth factor-beta (TGF-β) 
signaling pathway, Stilbenoid, diarylheptanoid and gin-
gerol biosynthesis, Flavonoid biosynthesis, Fluorobenzo-
ate degradation were lower in untreated asthma group 
than CON group (Additional file 15: Fig. S6b). Different 
members of airway microbiome were related to these 
pathways between CON and untreated asthma groups. 
Vitamin B6 metabolism were mainly associated with 
Rothia_mucilaginosa, other species also play a role such 
as Neisseria_meningitidis, Haemophilus_parainfluenzae 
Neisseria_flavescens and Actinpyyces_sp._ICM47. Other 
functional genes were mainly related with unclassified 
species (Additional file 16: Fig S7).

Correlations between microbiome and functional genes
Then, to demonstrate the global relationships between 
microbiome and functional genes, we built correlation 
networks at genus level involving the top 20 taxa and 
top 30 functional genes in (Additional file  17: Fig S8). 
CON group consisted of mainly two clusters, in cluster 
1, species from Bacteroidetes, Proteobacteria and Fir-
micutes showed less correlations with metabolism than 
untreated asthma group, species Rothia_mucilaginosa 
(phylum Actinobacteria) showed many correlations with 
several genes from metabolism and genetic information 
processing, including glycolysis/gluconeogenesis. How-
ever, untreated asthma group mainly consisted of a large 
cluster, species Rothia_mucilaginosa was associated with 
propanote metabolism and genes from environmental 
information processing (Additional file 17: Fig S8).

Discussion
In this study, we observed airway mycobiome and bac-
teriome dysbiosis and inter-kingdom imbalance in asth-
matic patients. The results also showed alterations of 
several functional genes associated with asthma, asth-
matic patients also showed different correlations between 
microbiome and functional genes.

Research on airway bacterial microbiota (bacteri-
ome) have been performed in recent years, there were 
no absolutely consistent results about the changes of 
microbial diversity and composition in asthma. For 
instance, we observed remarkably reduced bacterial 
diversity and richness in untreated asthma group when 
compared with CON group, this is partly inconsist-
ent with previous studies, in which increased [11, 20, 
21] or similar [12, 22] bacterial diversity or richness 
were reported in asthmatic patients. The frequency of 
the confirmed top five phyla also varied across stud-
ies [2, 12, 20, 23], even in the same populations from 
which samples were obtained, such as the comparison 

between our study (dominated by Firmicutes; roughly 
similar proportions of Actinobacteria and Proteobac-
teria; Bacteroidetes being the lowest) and Li’s study 
(roughly equal proportions of Firmicutes, Proteobacte-
ria, and Bacteroidetes accounting for over 80%, Actino-
bacteria being the lowest) [23]. If we reflect on all the 
proposed factors, including sample size, sample sites, 
sample population, methods of measurement, different 
phenotypes of asthma, different medications and so on, 
it is not unexpected to find the interindividual hetero-
geneity of microbial composition in all human niches, 
including the lung.

Streptococcus is one of the common pathogens related 
to the development of asthma [8, 9], it is negatively asso-
ciated with FEV1% predicted in asthmatics [24]. In our 
study, significantly increased abundance of Streptococ-
cus was detected in untreated asthma patients, it was also 
one of the potential biomarkers of asthma in our study. 
We found OTUs belonging to potential pathogens such 
as genera Streptococcus, Gemella and Neisseria were 
discriminant enriched in untreated asthma group, these 
genera were reported to be positively correlated with 
eosinophil percentage [25]. Moreover, the proportions 
of these taxa decreased in ICS receiving asthma patients, 
indicating a trend for the bacteriome to recover after ICS 
treatment and suggesting the idea that airway microbi-
ome can be affected by ICS prescription.

The link between fungi and asthma has been known 
for several decades, but the airway fungal microbiota 
(‘mycobiome’) is a new and emerging field lagging behind 
our understanding of bacteriome. Therefore, barely lit-
erature is available regarding the specific changes in 
airway mycobiome in asthma. We identified 4 major fun-
gal phyla and 6 major fungal genera, and the findings of 
lower α diversity in asthma patients, positive correlations 
between α diversity metrics and improving lung func-
tion and asthma control, echoed a recent observation in 
subjects with T2-high asthma of low bronchial fungal 
diversity and their correlations with clinical parameters, 
such as FEV1, fraction of exhaled nitric oxide (FENO) 
values [15]. We also demonstrated reduced Shannon 
index of mycobiome in ICS asthma group compared 
with untreated asthma group, indicating lower diver-
sity of airway mycobiome with the treatment of ICS. 
Significant taxonomic differences in mycobiome were 
detected between untreated asthma group and controls, 
10 genera were enriched in untreated asthma group rela-
tive to CON group: Wallemia, Mortierella, Fusarium, 
unclassified_f_Chaetomiaceae, Phialophora, Metarhi-
zium, unclassified_f_Sporormiaceae, Irpex, Schizophyl-
lum, Rhodotorula. This is consistent with pioneering 
research on several of them, which has been suggested 
to be associated with asthma [15, 26]. We also noted 
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reductions of well-known pathogens (Wallemia, Alter-
naria and Aspergillus) in ICS asthma group relative to 
untreated asthma group, supporting the idea that the ICS 
treatment can influence airway mycobiome.

We identified key OTUs belonging to genera Trametes, 
Aspergillus and unclassified_f_Sclerotiniaceae, to predict 
the presence of the status of asthma. 3 OUTs from genera 
Aspergillus were reduced in untreated asthma patients. 
Aspergillus was a strong candidate to be associated with 
disease severity or hospitalizations in individuals stricken 
with asthma and colonization of the airways by Aspergil-
lus species correlated with severe asthma and nasal aller-
gies [27, 28]. We noted that the 16S rRNA sequencing 
cannot denote the specific species and strains of Asper-
gillus, and the ability to produce toxin and pathogenic-
ity varied from species, so this inconsistency of present 
study with clinical perspectives should be interpreted 
with caution and deserve further researches in the light 
of the 16S rRNA sequencing to better delineate their 
associations to clinical several limitations. Apart from 
that, our results also showed changes of these OTUs 
(untreated asthma group vs CON group) tend to reverse 
in ICS asthma group, indicating a trend for the variations 
of these taxa in untreated asthma patients to recover after 
ICS treatment (ICS asthma group). All in all, the proposal 
of the effect of ICS on microbiome can be dated back to 
prior authors who demonstrated an increase in Proteo-
bacteria and Pseudomonas, a reduction in Bacteroidetes, 
Fusobacteria, and Prevotella species in those taking cor-
ticosteroid treatment, particularly the combination of 
ICS and oral corticosteroid (OCS) [29], and who reported 
that species from genus Penicillium enriched in BALF 
samples from asthmatic patients receiving ICSs [15].

Fungi and bacteria coexisted within the airway, com-
mensal fungi and bacteria could be found together in 
healthy conditions, and the break of microbial equilib-
rium may be a cause of asthma. The speculations of fun-
gal–fungal, bacterial–bacterial, and even fungal-bacterial 
interactions may be a missing link. It has been suggested 
in animal model that antibiotic treatment leads to major 
fungi expansions which were then reduced following 
antibiotic cessation [30], in return, antifungal treat-
ment induced a change in overall bacterial community 
structure in gut [31]. These results indicated a balance 
between mycobiome and bacteriome in certain environ-
ment. We performed network analysis to observe the air-
way microbiome equilibrium, the results showed tighter 
interactions between fungi and bacteria in CON group, 
but the number and the intensity of the correlations were 
decreased in untreated asthma and ICS asthma groups, 
indicating less correlations between the two kingdoms. 
Therefore, asthma may be characterized by disrupted 
connections between mycobiome and bacteriome, and 

ICS treatment could not reverse the microbial biodiver-
sity and inter-kingdom correlations. Further studies are 
needed to elucidate more precisely the inter-kingdom 
correlations in airway microbiome.

The results of metagenomic sequencing indicated 
that the status of asthma was mainly associated with 
functional genes from infectious diseases, immune dis-
ease, metabolism of cofactors and vitamins, xenobiotics 
biodegradation and metabolism, biosynthesis of other 
secondary metabolites, folding, sorting and degrada-
tion, immune system. For example, the abundance of 
genes related to asthma, Th1 and Th2 cell differentia-
tion, Vitamin B6 metabolism were higher in untreated 
asthma group than CON group. Th1 and Th2 have been 
demonstrated to correlated with the features of asthma 
such as airways hyperreactivity, eosinophilic and neu-
trophilic inflammation, and airway remodeling, playing 
a role in the development of asthma [32]. Vitamin B6 
can regulate productions of metabolites with immune 
regulatory roles, so changes of vitamin B6 metabolism 
can result in different diseases, including inflamma-
tory disease [33]. However, fewer genes related to TGF-
beta signaling pathway, Stilbenoid, diarylheptanoid 
and gingerol biosynthesis, Flavonoid biosynthesis were 
detected in untreated group than CON group. TGF-
beta is important in regulating T cell homeostasis, air-
way remodeling, airway inflammation and apoptosis of 
airway smooth muscle cell, many studies demonstrated 
targeting at TGF-beta signaling showed therapeu-
tic benefits for asthma to some extent [34–37]. Some 
bioactive compounds in ginger, such as gingerols, dia-
rylheptanoids, and flavonoids, are of significant impor-
tance in human disease because of their anti-allergic 
and anti-inflammatory properties [38]. Flavonoid can 
also decrease serum IgE level, inhibit eosinophil inflam-
mation and the release of Th2-associated cytokines in 
asthmatic animal models [39, 40]. Apart from these 
pathways, we also noted Toll-like receptor4 (TLR4), 
one of the major TLRs involved in the recognition of 
major bacterial components, plays an important role 
in targeting T cells response and the development of 
asthma. Some studies demonstrated beneficial effects 
of TLR4 agonists such as lipopolysaccharide (LPS) in 
asthma [41, 42], whereas others reported pivotal role of 
LPS-TLR4 signaling in asthma exacerbation, which par-
alleled clinical signs of microbial asthma exacerbation, 
including extended disease duration and worsen symp-
toms [43]. Thus, contribution of LPS-TLR4 signaling in 
asthma and the effect of ICS on it is also worthy of fur-
ther investigation. Different species act different func-
tional roles in the airway microenvironments because 
they possess different functional genes. For instance, 
Rothia_mucilaginosa contributed more to vitamin B6 
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metabolism than other species, interestingly, it dem-
onstrated different correlation patterns with functional 
genes in healthy controls and asthma patients. There-
fore, dysbiosis of airway microbiome in asthma was 
accompanied by alterations of connections between 
microbiome and functional pathways associated with 
the pathophysiology of asthma.

There are some limitations in our study. The relatively 
small sample size in our study may weaken the strength 
in some comparisons. The cross-sectional nature of our 
study and the exclusive selection of adult patients did 
not allow us to track the causal relationship between 
alterations in microbial community and asthma, which 
warranted to further focus. We also note the absence 
of patients taking OCS which can be used for further 
analysis of the effects of corticosteroid on microbiome 
in asthma. Likewise, the influence of air pollution should 
also be taken into consideration in the subsequent stud-
ies, because it has been reported that air pollution affects 
the distribution of microbiome communities in respira-
tory tract [44–46], especially in heavily air polluted areas. 
Still, oral contamination cannot be completely excluded 
in the process of sputum collection although the analy-
sis of airway bacterial composition here yielded quite 
distinct results compared with oral bacteriome [47]. It 
is also important to note that relatively small number of 
samples analyzed in metagenomic sequencing may limit 
the accuracy of extrapolating the results obtained in real 
world. Finally, it’s difficult for us to recruit steroid resist-
ant asthmatics because of the small subpopulation. We 
propose that microbiome plays a vital role in steroid-
based therapies. Our data showed increased abundance 
of genus Streptococcus, the colonization of which has 
been reported to be positively associated with sputum 
IL-8 concentration and neutrophil count [48]. We also 
reported ICS treatment could decrease the abundance 
of genera Aspergillus, Alternaria, both of which were 
described in severe asthma with fungal sensitization 
(SAFS). However, the role of mycobiome and bacteri-
ome in steroid resistant asthmatics is still remained to be 
delineated.

Conclusion
In conclusion, we demonstrated simultaneously mycobi-
ome and bacteriome dysbiosis in asthma characterized 
by alterations in diversity and composition. We revealed 
specific inter-kingdom between fungi and bacteria in 
asthma, as well as the alterations of functional genes. 
Future greater studies designed to elucidate causality and 
microbial mechanisms contributing to the pathophysiol-
ogy of asthma may therefore benefit from longitudinal 
studies. The correlations between fungi and bacteria, 

between specific microbiome and functional genes are 
also further research avenues to pursue.
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